login
A245114
G.f. satisfies: A(x)^3 = 1 + 9*x*A(x)^5.
5
1, 3, 36, 585, 10935, 221697, 4740120, 105225318, 2402040420, 56029889025, 1329627118248, 31998624800220, 779102941714461, 19157195459506230, 475034438632316400, 11865382635213387504, 298265217964573747095, 7539795161286074350785, 191548870595159091038640, 4888023169106780049244275
OFFSET
0,2
LINKS
FORMULA
a(n) = 9^n * binomial((5*n - 2)/3, n) / (2*n + 1).
2*a(n+3)*(n+3)*(n+2)*(n+1)*(2*n+7)=135*a(n)*(5*n+1)*(5*n+4)*(5*n+7)*(5*n+13). - Robert Israel, Jan 30 2018
EXAMPLE
G.f.: A(x) = 1 + 3*x + 36*x^2 + 585*x^3 + 10935*x^4 + 221697*x^5 +...
where A(x)^3 = 1 + 9*x*A(x)^5:
A(x)^3 = 1 + 9*x + 135*x^2 + 2430*x^3 + 48195*x^4 + 1015740*x^5 +...
A(x)^5 = 1 + 15*x + 270*x^2 + 5355*x^3 + 112860*x^4 + 2480058*x^5 +...
MAPLE
rec:= 2*a(n+3)*(n+3)*(n+2)*(n+1)*(2*n+7)=135*a(n)*(5*n+1)*(5*n+4)*(5*n+7)*(5*n+13):
f:= gfun:-rectoproc({rec, a(0)=1, a(1)=3, a(2)=36}, a(n), remember):
map(f, [$0..30]); # Robert Israel, Jan 30 2018
MATHEMATICA
nmax = 19; sol = {a[0] -> 1};
Do[A[x_] = Sum[a[k] x^k, {k, 0, n}] /. sol; eq = CoefficientList[A[x]^3 - (1 + 9 x A[x]^5) + O[x]^(n + 1), x] == 0 /. sol; sol = sol ~Join~ Solve[eq][[1]], {n, 1, nmax}];
sol /. HoldPattern[a[n_] -> k_] :> Set[a[n], k];
a /@ Range[0, nmax] (* Jean-François Alcover, Nov 01 2019 *)
PROG
(PARI) /* From A(x)^3 = 1 + 9*x*A(x)^5 : */
{a(n) = local(A=1+x); for(i=1, n, A=(1 + 9*x*A^5 +x*O(x^n))^(1/3)); polcoeff(A, n)}
for(n=0, 20, print1(a(n), ", "))
(PARI) {a(n) = 9^n * binomial((5*n - 2)/3, n) / (2*n+1)}
for(n=0, 20, print1(a(n), ", "))
CROSSREFS
Sequence in context: A305678 A233196 A368048 * A276018 A291096 A234869
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jul 31 2014
STATUS
approved