login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 56th year, we are closing in on 350,000 sequences, and we’ve crossed 9,700 citations (which often say “discovered thanks to the OEIS”).

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A245109 G.f.: Sum_{n>=0} exp(-(1 + n^2*x)) * (1 + n^2*x)^n / n!. 5
1, 3, 31, 520, 11991, 350889, 12428746, 516450792, 24619176153, 1323971052261, 79280864647205, 5231080689880500, 377062508515478306, 29479066783583059530, 2484534527715953700780, 224559818606249783480400, 21666961097367611148157815, 2222844864226101120054773295 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

Compare the g.f. to:

(1) Sum_{n>=0} exp(-(1+n*x)) * (1+n*x)^n / n! = 1/(1-x).

(2) Sum_{n>=1} exp(-n^2*x) * n^(2*n) * x^n/n! = Sum_{n>=1} S2(2*n,n)*x^n (A007820).

LINKS

Paul D. Hanna and Vaclav Kotesovec, Table of n, a(n) for n = 0..200 (first 100 terms from Paul D. Hanna)

FORMULA

a(n) ~ c * d^n * (n-1)!, where d = -4/(LambertW(-2*exp(-2))*(2+LambertW(-2*exp(-2)))) = 6.17655460948348035823168..., and c = 10.427337127699040838035... . - Vaclav Kotesovec, Jul 12 2014

a(n) = A049020(2n,n). - Alois P. Heinz, Aug 23 2017

EXAMPLE

G.f.: A(x) = 1 + 3*x + 31*x^2 + 520*x^3 + 11991*x^4 + 350889*x^5 +...

where

A(x) = exp(-1) + exp(-(1+x))*(1+x) + exp(-(1+2^2*x))*(1+2^2*x)^2/2!

+ exp(-(1+3^2*x))*(1+3^2*x)^3/3! + exp(-(1+4^2*x))*(1+4^2*x)^4/4!

+ exp(-(1+5^2*x))*(1+5^2*x)^5/5! + exp(-(1+6^2*x))*(1+6^2*x)^6/6!

+ exp(-(1+7^2*x))*(1+7^2*x)^7/7! + exp(-(1+8^2*x))*(1+8^2*x)^8/8! +...

simplifies to a power series in x with integer coefficients.

MATHEMATICA

Table[SeriesCoefficient[Sum[E^(-(1+k^2*x))*(1+k^2*x)^k/k!, {k, 0, Infinity}], {x, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Jul 12 2014 *)

PROG

(PARI) /* Must first set suitable precision */ \p300

{a(n)=local(A=1+x); A=suminf(k=0, exp(-(1+k^2*x)+x*O(x^n))*(1+k^2*x)^k/k!); round(polcoeff(A, n))}

for(n=0, 30, print1(a(n), ", "))

CROSSREFS

Cf. A049020, A245110.

Cf. A187655, A217899, A217900.

Sequence in context: A346313 A143637 A327227 * A121563 A261471 A273378

Adjacent sequences:  A245106 A245107 A245108 * A245110 A245111 A245112

KEYWORD

nonn

AUTHOR

Paul D. Hanna, Jul 12 2014

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 3 22:32 EST 2021. Contains 349468 sequences. (Running on oeis4.)