The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 56th year, we are closing in on 350,000 sequences, and we’ve crossed 9,700 citations (which often say “discovered thanks to the OEIS”).

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A245109 G.f.: Sum_{n>=0} exp(-(1 + n^2*x)) * (1 + n^2*x)^n / n!. 5
 1, 3, 31, 520, 11991, 350889, 12428746, 516450792, 24619176153, 1323971052261, 79280864647205, 5231080689880500, 377062508515478306, 29479066783583059530, 2484534527715953700780, 224559818606249783480400, 21666961097367611148157815, 2222844864226101120054773295 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS Compare the g.f. to: (1) Sum_{n>=0} exp(-(1+n*x)) * (1+n*x)^n / n! = 1/(1-x). (2) Sum_{n>=1} exp(-n^2*x) * n^(2*n) * x^n/n! = Sum_{n>=1} S2(2*n,n)*x^n (A007820). LINKS Paul D. Hanna and Vaclav Kotesovec, Table of n, a(n) for n = 0..200 (first 100 terms from Paul D. Hanna) FORMULA a(n) ~ c * d^n * (n-1)!, where d = -4/(LambertW(-2*exp(-2))*(2+LambertW(-2*exp(-2)))) = 6.17655460948348035823168..., and c = 10.427337127699040838035... . - Vaclav Kotesovec, Jul 12 2014 a(n) = A049020(2n,n). - Alois P. Heinz, Aug 23 2017 EXAMPLE G.f.: A(x) = 1 + 3*x + 31*x^2 + 520*x^3 + 11991*x^4 + 350889*x^5 +... where A(x) = exp(-1) + exp(-(1+x))*(1+x) + exp(-(1+2^2*x))*(1+2^2*x)^2/2! + exp(-(1+3^2*x))*(1+3^2*x)^3/3! + exp(-(1+4^2*x))*(1+4^2*x)^4/4! + exp(-(1+5^2*x))*(1+5^2*x)^5/5! + exp(-(1+6^2*x))*(1+6^2*x)^6/6! + exp(-(1+7^2*x))*(1+7^2*x)^7/7! + exp(-(1+8^2*x))*(1+8^2*x)^8/8! +... simplifies to a power series in x with integer coefficients. MATHEMATICA Table[SeriesCoefficient[Sum[E^(-(1+k^2*x))*(1+k^2*x)^k/k!, {k, 0, Infinity}], {x, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Jul 12 2014 *) PROG (PARI) /* Must first set suitable precision */ \p300 {a(n)=local(A=1+x); A=suminf(k=0, exp(-(1+k^2*x)+x*O(x^n))*(1+k^2*x)^k/k!); round(polcoeff(A, n))} for(n=0, 30, print1(a(n), ", ")) CROSSREFS Cf. A049020, A245110. Cf. A187655, A217899, A217900. Sequence in context: A346313 A143637 A327227 * A121563 A261471 A273378 Adjacent sequences:  A245106 A245107 A245108 * A245110 A245111 A245112 KEYWORD nonn AUTHOR Paul D. Hanna, Jul 12 2014 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 3 22:32 EST 2021. Contains 349468 sequences. (Running on oeis4.)