login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A245106
a(n) = Sum_{k=0..n} binomial(n,k) * 2^((n-k)^2) * 3^(k^2).
1
1, 5, 109, 20825, 43283641, 847757178125, 150104882696162149, 239301431405467344190625, 3433687649167507509801752071921, 443426550049486796441016276819404703125, 515377529600543569431994967945053326153797481949
OFFSET
0,2
LINKS
FORMULA
E.g.f.: ( Sum_{n>=0} 2^(n^2)*x^n/n! ) * ( Sum_{n>=0} 3^(n^2)*x^n/n! ).
a(n) ~ 3^(n^2). - Vaclav Kotesovec, Sep 03 2017
EXAMPLE
E.g.f.: A(x) = 1 + 5*x + 109*x^2/2! + 20825*x^3/3! + 43283641*x^4/4! + 847757178125*x^5/5! +...
where A(x) = B(x)*C(x) with
B(x) = 1 + 2*x + 2^4*x^2/2! + 2^9*x^3/3! + 2^16*x^4/4! + 2^25*x^5/5! +...
C(x) = 1 + 3*x + 3^4*x^2/2! + 3^9*x^3/3! + 3^16*x^4/4! + 3^25*x^5/5! +...
PROG
(PARI) {a(n)=sum(k=0, n, binomial(n, k)*2^((n-k)^2)*3^(k^2))}
for(n=0, 16, print1(a(n), ", "))
CROSSREFS
Cf. A197356.
Sequence in context: A296743 A358781 A188457 * A244004 A003465 A177680
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jul 12 2014
STATUS
approved