login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A245105
a(n) = Sum_{k=0..n} binomial(n,k) * (2^k + 3^k)^(n-k) * 3^(k^2).
2
1, 5, 115, 23075, 45885991, 868409174855, 151498753814478835, 240133851527473763171555, 3438118287689020571362466454991, 443637201221274201739533177428155842575, 515467077892246286863741619710574352065592734875
OFFSET
0,2
COMMENTS
Here we set p=2, q=3, t=u=v=1, in the binomial identity:
if b(n) = Sum_{k=0..n} C(n,k) * (u*p^k + t*q^k)^(n-k) * v^k * q^(k^2)
then b(n) = Sum_{k=0..n} C(n,k) * (t + v*p^(n-k)*q^k)^k * u^(n-k).
This is a special case of the more general binomial identity:
if b(n) = Sum_{k=0..n} C(n,k) * (t*p^(n-k)*r^k + u*q^(n-k)*s^k)^(n-k) * (v*p^(n-k)*r^k + w*q^(n-k)*s^k)^k
then b(n) = Sum_{k=0..n} C(n,k) * (t*p^(n-k)*q^k + v*r^(n-k)*s^k)^(n-k) * (u*p^(n-k)*q^k + w*r^(n-k)*s^k)^k.
LINKS
FORMULA
a(n) = Sum_{k=0..n} binomial(n,k) * (1 + 2^(n-k)*3^k)^k.
a(n) ~ 3^(n^2). - Vaclav Kotesovec, Sep 03 2017
EXAMPLE
E.g.f.: A(x) = 1 + 5*x + 115*x^2/2! + 23075*x^3/3! + 45885991*x^4/4! +...
Illustration of initial terms:
a(1) = (1 + 1) + 3 = 5;
a(2) = (1 + 1)^2 + 2*(2 + 3)*3 + 3^4 = 115;
a(3) = (1 + 1)^3 + 3*(2 + 3)^2*3 + 3*(2^2 + 3^2)*3^4 + 3^9 = 23075;
a(4) = (1 + 1)^4 + 4*(2 + 3)^3*3 + 6*(2^2 + 3^2)^2*3^4 + 4*(2^3 + 3^3)*3^9 + 3^16 = 45885991;
a(5) = (1 + 1)^5 + 5*(2 + 3)^4*3 + 10*(2^2 + 3^2)^3*3^4 + 10*(2^3 + 3^3)^2*3^9 + 5*(2^4 + 3^4)*3^16 + 3^25 = 868409174855; ...
and by the binomial identity:
a(1) = 1 + (1 + 3) = 5;
a(2) = 1 + 2*(1 + 2*3) + (1 + 3^2)^2 = 115;
a(3) = 1 + 3*(1 + 2^2*3) + 3*(1 + 2*3^2)^2 + (1 + 3^3)^3 = 23075;
a(4) = 1 + 4*(1 + 2^3*3) + 6*(1 + 2^2*3^2)^2 + 4*(1 + 2*3^3)^3 + (1 + 3^4)^4 = 45885991;
a(5) = 1 + 5*(1 + 2^4*3) + 10*(1 + 2^3*3^2)^2 + 10*(1 + 2^2*3^3)^3 + 5*(1 + 2*3^4)^4 + (1 + 3^5)^5 = 868409174855; ...
MATHEMATICA
Table[Sum[Binomial[n, k](2^k+3^k)^(n-k) 3^(k^2), {k, 0, n}], {n, 0, 10}] (* Harvey P. Dale, Mar 14 2020 *)
PROG
(PARI) {a(n)=sum(k=0, n, binomial(n, k)*(2^k + 3^k)^(n-k)*3^(k^2))}
for(n=0, 16, print1(a(n), ", "))
(PARI) {a(n)=sum(k=0, n, binomial(n, k)*(1 + 2^(n-k)*3^k)^k)}
for(n=0, 16, print1(a(n), ", "))
CROSSREFS
Cf. A245104.
Sequence in context: A209053 A255884 A109057 * A080988 A230338 A156514
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jul 12 2014
STATUS
approved