login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A245104
a(n) = Sum_{k=0..n} binomial(n,k) * (2^(n-k) + 3^k)^(n-k) * 3^(k^2).
2
1, 6, 136, 23526, 45511576, 865387222026, 151344908458334956, 240068450677328881760046, 3437876688953125801990264400656, 443629347005368885975552423301544246546, 515464815896035690815550079747899012312444122676
OFFSET
0,2
COMMENTS
Here we set p=2, q=3, t=u=v=1, in the binomial identity:
if b(n) = Sum_{k=0..n} C(n,k) * (u*p^(n-k) + t*q^k)^(n-k) * v^k * q^(k^2)
then b(n) = Sum_{k=0..n} C(n,k) * (v*q^(n-k) + t*p^k)^(n-k) * u^k * p^(k^2).
This is a special case of the more general binomial identity:
if b(n) = Sum_{k=0..n} C(n,k) * (t*p^(n-k)*r^k + u*q^(n-k)*s^k)^(n-k) * (v*p^(n-k)*r^k + w*q^(n-k)*s^k)^k
then b(n) = Sum_{k=0..n} C(n,k) * (t*p^(n-k)*q^k + v*r^(n-k)*s^k)^(n-k) * (u*p^(n-k)*q^k + w*r^(n-k)*s^k)^k.
LINKS
FORMULA
a(n) = Sum_{k=0..n} binomial(n,k) * (3^(n-k) + 2^k)^(n-k) * 2^(k^2).
a(n) == 1 (mod 5).
a(n) ~ 3^(n^2). - Vaclav Kotesovec, Sep 03 2017
EXAMPLE
E.g.f.: A(x) = 1 + 6*x + 136*x^2/2! + 23526*x^3/3! + 45511576*x^4/4! +...
Illustration of initial terms:
a(1) = (2 + 1) + 3 = 6;
a(2) = (2^2 + 1)^2 + 2*(2 + 3)*3 + 3^4 = 136;
a(3) = (2^3 + 1)^3 + 3*(2^2 + 3)^2*3 + 3*(2 + 3^2)*3^4 + 3^9 = 23526;
a(4) = (2^4 + 1)^4 + 4*(2^3 + 3)^3*3 + 6*(2^2 + 3^2)^2*3^4 + 4*(2 + 3^3)*3^9 + 3^16 = 45511576;
a(5) = (2^5 + 1)^5 + 5*(2^4 + 3)^4*3 + 10*(2^3 + 3^2)^3*3^4 + 10*(2^2 + 3^3)^2*3^9 + 5*(2 + 3^4)*3^16 + 3^25 = 865387222026; ...
and by the binomial identity:
a(1) = (3 + 1) + 2 = 6;
a(2) = (3^2 + 1)^2 + 2*(3 + 2)*2 + 2^4 = 136;
a(3) = (3^3 + 1)^3 + 3*(3^2 + 2)^2*2 + 3*(3 + 2^2)*2^4 + 2^9 = 23526;
a(4) = (3^4 + 1)^4 + 4*(3^3 + 2)^3*2 + 6*(3^2 + 2^2)^2*2^4 + 4*(3 + 2^3)*2^9 + 2^16 = 45511576;
a(5) = (3^5 + 1)^5 + 5*(3^4 + 2)^4*2 + 10*(3^3 + 2^2)^3*2^4 + 10*(3^2 + 2^3)^2*2^9 + 5*(3 + 2^4)*2^16 + 2^25 = 865387222026; ...
PROG
(PARI) {a(n)=sum(k=0, n, binomial(n, k)*(2^(n-k) + 3^k)^(n-k)*3^(k^2))}
for(n=0, 16, print1(a(n), ", "))
(PARI) {a(n)=sum(k=0, n, binomial(n, k)*(3^(n-k) + 2^k)^(n-k)*2^(k^2))}
for(n=0, 16, print1(a(n), ", "))
CROSSREFS
Cf. A245105.
Sequence in context: A090407 A222915 A367531 * A075185 A376113 A003994
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jul 12 2014
STATUS
approved