login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A090407
a(n) = Sum_{k = 0..n} C(4*n + 1, 4*k).
4
1, 6, 136, 2016, 32896, 523776, 8390656, 134209536, 2147516416, 34359607296, 549756338176, 8796090925056, 140737496743936, 2251799780130816, 36028797153181696, 576460751766552576, 9223372039002259456
OFFSET
0,2
FORMULA
From Harvey P. Dale, Jan 19 2012: (Start)
a(0) = 1, a(1) = 6, a(n) = 12*a(n-1)+64*a(n-2).
G.f.: (6*x-1)/(64*x^2+12*x-1). (End)
a(n) = (1/2) * 4^n * (4^n + (-1)^n). - Peter Bala, Feb 06 2019
MATHEMATICA
Table[Sum[Binomial[4n+1, 4k], {k, 0, n}], {n, 0, 30}] (* or *) LinearRecurrence[ {12, 64}, {1, 6}, 30] (* Harvey P. Dale, Jan 19 2012 *)
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Paul Barry, Nov 29 2003
STATUS
approved