login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A070775
a(n) = Sum_{k=0..n} binomial(4*n,4*k).
20
1, 2, 72, 992, 16512, 261632, 4196352, 67100672, 1073774592, 17179738112, 274878431232, 4398044413952, 70368752566272, 1125899873288192, 18014398643699712, 288230375614840832, 4611686020574871552, 73786976286248271872, 1180591620751771041792, 18889465931341141901312
OFFSET
0,2
COMMENTS
Also the cogrowth sequence of the 16-element group C4 X C4 = <S,T | S^4, T^4, [S,T]>. - Sean A. Irvine, Nov 09 2024
FORMULA
a(n) = (1/2)*(-4)^n + (1/4)*16^n for n > 0.
Let b(n) = a(n) - 2^(4n)/4 then b(n+1) = 4*b(n) - Benoit Cloitre, May 27 2004
G.f.: (1 - 10*x - 16*x^2)/((1-16*x)*(1+4*x)). - Seiichi Manyama, Mar 15 2019
G.f.: ((cos(x) + cosh(x))/2)^2 = Sum_{n >= 0} a(n)*x(4*n)/(4*n)!. - Peter Bala, Jun 20 2022
MAPLE
a := n -> if n = 0 then 1 else 4^(n - 1)*(2*(-1)^n + 4^n) fi:
seq(a(n), n = 0..19); # Peter Luschny, Jul 02 2022
MATHEMATICA
Table[Sum[Binomial[4n, 4k], {k, 0, n}], {n, 0, 30}] (* or *) Join[{1}, LinearRecurrence[{12, 64}, {2, 72}, 30]] (* Harvey P. Dale, Apr 24 2011 *)
PROG
(PARI) a(n)=sum(k=0, n, binomial(4*n, 4*k))
(PARI) N=66; x='x+O('x^N); Vec((1-10*x-16*x^2)/((1-16*x)*(1+4*x))) \\ Seiichi Manyama, Mar 15 2019
CROSSREFS
Sum_{k=0..n} binomial(b*n,b*k): A000079 (b=1), A081294 (b=2), A007613 (b=3), this sequence (b=4), A070782 (b=5), A070967 (b=6), A094211 (b=7), A070832 (b=8), A094213 (b=9), A070833 (b=10).
Sequence in context: A163274 A030993 A283568 * A157061 A179957 A221549
KEYWORD
easy,nonn
AUTHOR
Sebastian Gutierrez and Sarah Kolitz (skolitz(AT)mit.edu), May 15 2002
STATUS
approved