The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A070775 a(n) = Sum_{k=0..n} binomial(4*n,4*k). 16
 1, 2, 72, 992, 16512, 261632, 4196352, 67100672, 1073774592, 17179738112, 274878431232, 4398044413952, 70368752566272, 1125899873288192, 18014398643699712, 288230375614840832, 4611686020574871552, 73786976286248271872, 1180591620751771041792, 18889465931341141901312 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 LINKS Seiichi Manyama, Table of n, a(n) for n = 0..830 Index entries for linear recurrences with constant coefficients, signature (12, 64). FORMULA a(n) = 1/2*(-4)^n+1/4*16^n for n > 0. Let b(n) = a(n)-2^(4n)/4 then b(n+1)=4*b(n) - Benoit Cloitre, May 27 2004 G.f.: (1-10*x-16*x^2)/((1-16*x)*(1+4*x)). - Seiichi Manyama, Mar 15 2019 MATHEMATICA Table[Sum[Binomial[4n, 4k], {k, 0, n}], {n, 0, 30}] (* or *) Join[{1}, LinearRecurrence[{12, 64}, {2, 72}, 30]] (* Harvey P. Dale, Apr 24 2011 *) PROG (PARI) a(n)=sum(k=0, n, binomial(4*n, 4*k)) (PARI) N=66; x='x+O('x^N); Vec((1-10*x-16*x^2)/((1-16*x)*(1+4*x))) \\ Seiichi Manyama, Mar 15 2019 CROSSREFS Sum_{k=0..n} binomial(b*n,b*k): A000079 (b=1), A081294 (b=2), A007613 (b=3), this sequence (b=4), A070782 (b=5), A070967 (b=6), A094211 (b=7), A070832 (b=8), A094213 (b=9), A070833 (b=10). Sequence in context: A163274 A030993 A283568 * A157061 A179957 A221549 Adjacent sequences:  A070772 A070773 A070774 * A070776 A070777 A070778 KEYWORD easy,nonn AUTHOR Sebastian Gutierrez and Sarah Kolitz (skolitz(AT)mit.edu), May 15 2002 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 25 19:14 EDT 2020. Contains 337344 sequences. (Running on oeis4.)