login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A163274
a(n) = n^4*(n+1)^2/2.
6
0, 2, 72, 648, 3200, 11250, 31752, 76832, 165888, 328050, 605000, 1054152, 1752192, 2798978, 4321800, 6480000, 9469952, 13530402, 18948168, 26064200, 35280000, 47064402, 61960712, 80594208, 103680000, 132031250, 166567752, 208324872
OFFSET
0,2
COMMENTS
Row sums of triangle A163284.
FORMULA
From R. J. Mathar, Jul 29 2009: (Start)
a(n) = 7*a(n-1) - 21*a(n-2) + 35*a(n-3) - 35*a(n-4) + 21*a(n-5) - 7*a(n-6) + a(n-7).
G.f.: -2*x*(1 + 29*x + 93*x^2 + 53*x^3 + 4*x^4)/(x-1)^7. (End)
From Amiram Eldar, May 14 2022: (Start)
Sum_{n>=1} 1/a(n) = 4*Pi^2/3 + Pi^4/45 - 4*zeta(3) - 10.
Sum_{n>=1} (-1)^(n+1)/a(n) = 10 + Pi^2/3 + 7*Pi^4/360 - 16*log(2) - 3*zeta(3). (End)
MATHEMATICA
Table[(n^4 (n+1)^2)/2, {n, 0, 30}] (* or *) LinearRecurrence[ {7, -21, 35, -35, 21, -7, 1}, {0, 2, 72, 648, 3200, 11250, 31752}, 30] (* Harvey P. Dale, May 07 2012 *)
PROG
(PARI) a(n)=n^4*(n+1)^2/2 \\ Charles R Greathouse IV, Oct 07 2015
KEYWORD
easy,nonn
AUTHOR
Omar E. Pol, Jul 24 2009
EXTENSIONS
More terms from R. J. Mathar, Jul 29 2009
STATUS
approved