OFFSET
0,2
COMMENTS
Row sums of triangle A163284.
LINKS
Harvey P. Dale, Table of n, a(n) for n = 0..1000
Index entries for linear recurrences with constant coefficients, signature (7,-21,35,-35,21,-7,1).
FORMULA
From R. J. Mathar, Jul 29 2009: (Start)
a(n) = 7*a(n-1) - 21*a(n-2) + 35*a(n-3) - 35*a(n-4) + 21*a(n-5) - 7*a(n-6) + a(n-7).
G.f.: -2*x*(1 + 29*x + 93*x^2 + 53*x^3 + 4*x^4)/(x-1)^7. (End)
From Amiram Eldar, May 14 2022: (Start)
Sum_{n>=1} 1/a(n) = 4*Pi^2/3 + Pi^4/45 - 4*zeta(3) - 10.
Sum_{n>=1} (-1)^(n+1)/a(n) = 10 + Pi^2/3 + 7*Pi^4/360 - 16*log(2) - 3*zeta(3). (End)
MATHEMATICA
Table[(n^4 (n+1)^2)/2, {n, 0, 30}] (* or *) LinearRecurrence[ {7, -21, 35, -35, 21, -7, 1}, {0, 2, 72, 648, 3200, 11250, 31752}, 30] (* Harvey P. Dale, May 07 2012 *)
PROG
(PARI) a(n)=n^4*(n+1)^2/2 \\ Charles R Greathouse IV, Oct 07 2015
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Omar E. Pol, Jul 24 2009
EXTENSIONS
More terms from R. J. Mathar, Jul 29 2009
STATUS
approved