OFFSET
1,3
COMMENTS
From Mauro Fiorentini, Jul 15 2018: (Start)
If p is an odd prime, 2^(2*p - 2)*p belongs to the sequence, so the sequence is infinite.
If n^2 + 6*n + 6 = 2*p*q is twice the product of two distinct odd primes, 2^n*p*q belongs to the sequence.
No number of the form 2^n*p^2, with p odd prime, belongs to the sequence. (End)
For every possible prime signature (see A025487) there can be at most one number having it in this sequence. - David A. Corneth, Jul 15 2018
2*10^14 < a(18) <= 404620279021568. Also terms: 467515780104192, 1014849232437248, 4446425022726144, 5806013294837760, and 46545625738641408. - Giovanni Resta, Jul 16 2018
These numbers are named "super-perfect numbers" (Miller), "gamma-perfect numbers" (Sandor & Crstici), "factor-perfect numbers" (Knopfmacher & Mays) and "balanced numbers" (Brown). - Amiram Eldar, Aug 22 2018
From David A. Corneth, Aug 23 2018: (Start)
Suppose one searches terms below u. We have A074206(m * t) > A074206(m) for m, t > 1 so if A074206(m) > u we needn't check any value A074206(m * t) where m * t < u.
All terms < 10^25 except 29809 are of the form 4^e * s where s is a squarefree odd number. (End)
REFERENCES
J. Sandor and B. Crstici, Handbook of Number Theory II, Springer, 2004, pp. 54-55.
LINKS
David A. Corneth, Table of n, a(n) for n = 1..49 (terms < 10^30)
Peter Brown, Number of Ordered Factorizations, 2004.
Martin Klazar and Florian Luca, On the maximal order of numbers in the "factorisatio numerorum" problem, Journal of Number Theory, Vol. 124, No. 2 (2007), pp. 470-490.
Arnold Knopfmacher and M. E. Mays, A survey of factorization counting functions, International Journal of Number Theory, Vol. 1, No. 4 (2005), pp. 563-581, DOI: 10.1142/S1793042105000315.
Michael D. Miller, A recursively defined divisor function, The Fibonacci Quarterly, Vol. 13 (1975), pp. 199-204.
Project Euler, Problem 548: Gozinta Chains.
MAPLE
A074206 := proc(n) option remember; if n <= 1 then n; else add(procname(d), d=numtheory[divisors](n) minus {n}) ; end if; end proc: for n from 1 do if n = A074206(n) then printf("%d, \n", n) ; end if; end do: \\ R. J. Mathar, Aug 01 2009
PROG
(PARI) term(n) = {my(f = A074206(n)); if(factor(n)[, 2] == factor(f)[, 2], f, 0) \\ returns 0 if there is no term in the sequence with prime signature of n, or if there is, returns that term. - David A. Corneth, Jul 15 2018
CROSSREFS
KEYWORD
nonn
AUTHOR
Mats Granvik, Jul 24 2009
EXTENSIONS
a(6)-a(7) from R. J. Mathar, Aug 01 2009
a(8)-a(9) from Nathaniel Johnston, Dec 04 2010
a(10)-a(12) from Mauro Fiorentini, Dec 07 2015
a(13)-a(17) from Giovanni Resta, Jul 16 2018, following a suggestion from David A. Corneth
a(18)-a(23) from Amiram Eldar, Aug 22 2018, following the same suggestion with an extended list of terms of A025487.
STATUS
approved