The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A004425 Expansion of (Sum x^(n^2), n = -inf .. inf )^(-24). 4
 1, -48, 1200, -20800, 280752, -3142560, 30338880, -259459200, 2003790000, -14178640368, 92960115360, -569803615680, 3289122824000, -17987650183200, 93669997008000, -466466351287680, 2229627536828592, -10261752523778400 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS From Vaclav Kotesovec, Aug 18 2015, extended Jan 16 2017: (Start) In general, if g.f. = Product_{k>=1} ((1+x^k)/(1-x^k))^m and m>=1, then a(n) ~ exp(Pi*sqrt(m*n)) * m^((m+1)/4) / (2^(3*(m+1)/2) * n^((m+3)/4)) * (1 - (m+3)*(m+1)/(8*Pi*sqrt(m*n))). If g.f. = Product_{k>=1} ((1+(-x)^k)/(1-(-x)^k))^m and m>=1, then a(n) ~ (-1)^n * exp(Pi*sqrt(m*n)) * m^((m+1)/4) / (2^(3*(m+1)/2) * n^((m+3)/4)) * (1 - (m+3)*(m+1)/(8*Pi*sqrt(m*n))). (End) LINKS Seiichi Manyama, Table of n, a(n) for n = 0..10000 FORMULA a(n) ~ (-1)^n * exp(Pi*sqrt(m*n)) * m^((m+1)/4) / (2^(3*(m+1)/2) * n^((m+3)/4)), set m = 24 for this sequence. - Vaclav Kotesovec, Aug 18 2015 MATHEMATICA nmax = 30; CoefficientList[Series[Product[((1 + (-x)^k)/(1 - (-x)^k))^24, {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Aug 18 2015 *) CROSSREFS Sequence in context: A344401 A011000 A025233 * A082558 A285169 A163272 Adjacent sequences:  A004422 A004423 A004424 * A004426 A004427 A004428 KEYWORD sign AUTHOR STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified July 23 11:52 EDT 2021. Contains 346259 sequences. (Running on oeis4.)