OFFSET
0,2
COMMENTS
From Vaclav Kotesovec, Aug 18 2015, extended Jan 16 2017: (Start)
In general, if g.f. = Product_{k>=1} ((1+x^k)/(1-x^k))^m and m>=1, then a(n) ~ exp(Pi*sqrt(m*n)) * m^((m+1)/4) / (2^(3*(m+1)/2) * n^((m+3)/4)) * (1 - (m+3)*(m+1)/(8*Pi*sqrt(m*n))).
If g.f. = Product_{k>=1} ((1+(-x)^k)/(1-(-x)^k))^m and m>=1, then a(n) ~ (-1)^n * exp(Pi*sqrt(m*n)) * m^((m+1)/4) / (2^(3*(m+1)/2) * n^((m+3)/4)) * (1 - (m+3)*(m+1)/(8*Pi*sqrt(m*n))).
(End)
LINKS
Seiichi Manyama, Table of n, a(n) for n = 0..10000
FORMULA
a(n) ~ (-1)^n * exp(Pi*sqrt(m*n)) * m^((m+1)/4) / (2^(3*(m+1)/2) * n^((m+3)/4)), set m = 24 for this sequence. - Vaclav Kotesovec, Aug 18 2015
MATHEMATICA
nmax = 30; CoefficientList[Series[Product[((1 + (-x)^k)/(1 - (-x)^k))^24, {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Aug 18 2015 *)
CROSSREFS
KEYWORD
sign
AUTHOR
STATUS
approved