login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A163275
a(n) = n^5*(n+1)^2/2.
6
0, 2, 144, 1944, 12800, 56250, 190512, 537824, 1327104, 2952450, 6050000, 11595672, 21026304, 36386714, 60505200, 97200000, 151519232, 230016834, 341067024, 495219800, 705600000, 988352442, 1363135664, 1853666784
OFFSET
0,2
COMMENTS
Row sums of triangle A163285.
FORMULA
From R. J. Mathar, Feb 05 2010: (Start)
a(n) = 8*a(n-1) - 28*a(n-2) + 56*a(n-3) - 70*a(n-4) + 56*a(n-5) - 28*a(n-6) + 8*a(n-7) - a(n-8).
G.f.: 2*x*(1 + 64*x + 424*x^2 + 584*x^3 + 179*x^4 +8*x^5)/(x-1)^8. (End)
From Amiram Eldar, May 14 2022: (Start)
Sum_{n>=1} 1/a(n) = 12 -5*Pi^2/3 - 2*Pi^4/45 + 6*zeta(3) + 2*zeta(5).
Sum_{n>=1} (-1)^(n+1)/a(n) = 20*log(2) + 9*zeta(3)/2 + 15*zeta(5)/8 - 12 - Pi^2/2 - 7*Pi^4/180. (End)
MAPLE
A163275 := proc(n) n^5*(n+1)^2/2 ; end proc: seq(A163275(n), n=0..60) ; # R. J. Mathar, Feb 05 2010
MATHEMATICA
Table[(1/2)*n^5*(n + 1)^2, {n, 0, 50}] (* or *) LinearRecurrence[{8, -28, 56, -70, 56, -28, 8, -1}, {0, 2, 144, 1944, 12800, 56250, 190512, 537824}, 50] (* G. C. Greubel, Dec 12 2016 *)
PROG
(PARI) concat([0], Vec(2*x*(1+64*x+424*x^2+584*x^3+179*x^4+8*x^5)/(x-1)^8 + O(x^50))) \\ G. C. Greubel, Dec 12 2016
KEYWORD
easy,nonn
AUTHOR
Omar E. Pol, Jul 24 2009
EXTENSIONS
Extended by R. J. Mathar, Feb 05 2010
STATUS
approved