login
A264153
a(n) = ((2*n)!)^2 / 2^n.
0
1, 2, 144, 64800, 101606400, 411505920000, 3585039575040000, 59375425441812480000, 1710012252724199424000000, 80059353648041568632832000000, 5780285333388601255290470400000000, 616883611349898303167109582028800000000, 93983451956379706284115479041251737600000000
OFFSET
0,2
FORMULA
a(n) = A134372(n)/A000079(n).
a(n)*A264152(n) = A134372(n)*A006882(2*n-1)/A006882(n).
a(n)/A264152(n) is an integer: 1, 1, 24, 1620,....
MAPLE
a := n -> (2*n)!^2/2^n; seq(a(n), n=0..10);
PROG
(Sage)
a = lambda n: factorial(2*n)^2 >> n
[a(n) for n in range(11)]
CROSSREFS
KEYWORD
nonn
AUTHOR
Peter Luschny, Nov 06 2015
STATUS
approved