OFFSET
0,2
COMMENTS
Row sums of triangle A163282.
Also, the number of nonattacking placements of 2 rooks on an (n+1) X (n+1) board. - Thomas Zaslavsky, Jun 26 2010
If P_{k}(n) is the n-th k-gonal number, then a(n) = P_{s}(n+1)*P_{t}(n+1) - P_{s+1}(n+1)*P_{t-1}(n+1) for s=t+1. - Bruno Berselli, Sep 05 2014
Subsequence of A000982, see formula. - David James Sycamore, Jul 31 2018
Number of edges in the (n+1) X (n+1) rook complement graph. - Freddy Barrera, May 02 2019
Number of paths from (0,0) to (n+2,n+2) consisting of exactly three forward horizontal steps and three upward vertical steps. - Greg Dresden and Snezhana Tuneska, Aug 24 2023
REFERENCES
Seth Chaiken, Christopher R. H. Hanusa, and Thomas Zaslavsky, A q-queens problem, in preparation. - Thomas Zaslavsky, Jun 26 2010
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 0..1000
Seth Chaiken, Christopher R. H. Hanusa and Thomas Zaslavsky, A q-Queens Problem. IV. Queens, Bishops, Nightriders (and Rooks), arXiv preprint arXiv:1609.00853 [math.CO], 2016-2020.
A. Umar, Combinatorial Results for Semigroups of Orientation-Preserving Partial Transformations, J. Int. Seq., Vol. 14 (2011), Article 11.7.5.
Eric Weisstein's World of Mathematics, Rook Complement Graph.
Index entries for linear recurrences with constant coefficients, signature (5,-10,10,-5,1).
FORMULA
G.f.: 2*x*(1+4*x+x^2) / (1-x)^5. - R. J. Mathar, Nov 30 2011
Let t(n) = A000217(n). Then a(n) = (t(n-1)*(t(n)+t(n+1)) + t(n)*(t(n-1)+t(n+1)) + t(n+1)*(t(n-1)+t(n)))/3. - J. M. Bergot, Jun 21 2012
a(n) = A000982(n*(n+1)). - David James Sycamore, Jul 31 2018
From Amiram Eldar, Nov 02 2021: (Start)
Sum_{n>=1} 1/a(n) = 2*Pi^2/3 - 6.
Sum_{n>=1} (-1)^(n+1)/a(n) = 6 - 8*log(2). (End)
Another identity: ..., a(4) = 200 = 1*(2+4+6+8) + 3*(4+6+8) + 5*(6+8) + 7*(8), a(5) = 450 = 1*(2+4+6+8+10) + 3*(4+6+8+10) + 5*(6+8+10) + 7*(8+10) + 9*(10) = 30+84+120+126+90, and so on. - J. M. Bergot, Aug 25 2022
MATHEMATICA
CoefficientList[Series[2*x*(1+4*x+x^2)/(1-x)^5, {x, 0, 40}], x] (* Vincenzo Librandi, Mar 26 2012 *)
PROG
(Magma) [n^2*(n+1)^2/2: n in [0..40]]; // Vincenzo Librandi, Mar 26 2012
(PARI) a(n)=n^2*(n+1)^2/2 \\ Charles R Greathouse IV, Oct 07 2015
(GAP) List([0..40], n->(n*(n+1))^2/2); # Muniru A Asiru, Aug 02 2018
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Omar E. Pol, Jul 24 2009
STATUS
approved