Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #102 Aug 24 2023 12:06:38
%S 0,2,18,72,200,450,882,1568,2592,4050,6050,8712,12168,16562,22050,
%T 28800,36992,46818,58482,72200,88200,106722,128018,152352,180000,
%U 211250,246402,285768,329672,378450,432450,492032,557568,629442,708050,793800
%N a(n) = n^2*(n+1)^2/2.
%C Row sums of triangle A163282.
%C Also, the number of nonattacking placements of 2 rooks on an (n+1) X (n+1) board. - _Thomas Zaslavsky_, Jun 26 2010
%C If P_{k}(n) is the n-th k-gonal number, then a(n) = P_{s}(n+1)*P_{t}(n+1) - P_{s+1}(n+1)*P_{t-1}(n+1) for s=t+1. - _Bruno Berselli_, Sep 05 2014
%C Subsequence of A000982, see formula. - _David James Sycamore_, Jul 31 2018
%C Number of edges in the (n+1) X (n+1) rook complement graph. - _Freddy Barrera_, May 02 2019
%C Number of paths from (0,0) to (n+2,n+2) consisting of exactly three forward horizontal steps and three upward vertical steps. - _Greg Dresden_ and Snezhana Tuneska, Aug 24 2023
%D Seth Chaiken, Christopher R. H. Hanusa, and Thomas Zaslavsky, A q-queens problem, in preparation. - _Thomas Zaslavsky_, Jun 26 2010
%H Vincenzo Librandi, <a href="/A163102/b163102.txt">Table of n, a(n) for n = 0..1000</a>
%H Seth Chaiken, Christopher R. H. Hanusa and Thomas Zaslavsky, <a href="http://arxiv.org/abs/1609.00853">A q-Queens Problem. IV. Queens, Bishops, Nightriders (and Rooks)</a>, arXiv preprint arXiv:1609.00853 [math.CO], 2016-2020.
%H A. Umar, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL14/Umar/umar2.html">Combinatorial Results for Semigroups of Orientation-Preserving Partial Transformations</a>, J. Int. Seq., Vol. 14 (2011), Article 11.7.5.
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/RookComplementGraph.html">Rook Complement Graph</a>.
%H <a href="/index/Rec#order_05">Index entries for linear recurrences with constant coefficients</a>, signature (5,-10,10,-5,1).
%F a(n) = 2*A000537(n) = A035287(n+1)/2. - _Omar E. Pol_, Nov 29 2011
%F G.f.: 2*x*(1+4*x+x^2) / (1-x)^5. - _R. J. Mathar_, Nov 30 2011
%F Let t(n) = A000217(n). Then a(n) = (t(n-1)*(t(n)+t(n+1)) + t(n)*(t(n-1)+t(n+1)) + t(n+1)*(t(n-1)+t(n)))/3. - _J. M. Bergot_, Jun 21 2012
%F a(n) = A000982(n*(n+1)). - _David James Sycamore_, Jul 31 2018
%F From _Amiram Eldar_, Nov 02 2021: (Start)
%F Sum_{n>=1} 1/a(n) = 2*Pi^2/3 - 6.
%F Sum_{n>=1} (-1)^(n+1)/a(n) = 6 - 8*log(2). (End)
%F Another identity: ..., a(4) = 200 = 1*(2+4+6+8) + 3*(4+6+8) + 5*(6+8) + 7*(8), a(5) = 450 = 1*(2+4+6+8+10) + 3*(4+6+8+10) + 5*(6+8+10) + 7*(8+10) + 9*(10) = 30+84+120+126+90, and so on. - _J. M. Bergot_, Aug 25 2022
%t CoefficientList[Series[2*x*(1+4*x+x^2)/(1-x)^5,{x,0,40}],x] (* _Vincenzo Librandi_, Mar 26 2012 *)
%o (Magma) [n^2*(n+1)^2/2: n in [0..40]]; // _Vincenzo Librandi_, Mar 26 2012
%o (PARI) a(n)=n^2*(n+1)^2/2 \\ _Charles R Greathouse IV_, Oct 07 2015
%o (GAP) List([0..40],n->(n*(n+1))^2/2); # _Muniru A Asiru_, Aug 02 2018
%Y Column k=2 of A144084.
%Y Cf. A006002, A099903, A163274, A163275, A163276, A163277, A163282, A000982.
%K nonn,easy
%O 0,2
%A _Omar E. Pol_, Jul 24 2009