login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A099903
Sum of all matrix elements of n X n matrix M(i,j) = i^3+j^3, (i,j = 1..n). a(n) = n^3*(n+1)^2/2.
9
2, 36, 216, 800, 2250, 5292, 10976, 20736, 36450, 60500, 95832, 146016, 215306, 308700, 432000, 591872, 795906, 1052676, 1371800, 1764000, 2241162, 2816396, 3504096, 4320000, 5281250, 6406452, 7715736, 9230816, 10975050, 12973500
OFFSET
1,1
COMMENTS
Numerator of a(n)/n! is A099904(n).
FORMULA
a(n) = Sum_{i=1..n, j=1..n} (i^3 + j^3).
a(n) = 2*n*Sum_{k=1..n} k^3. - Gary Detlefs, Oct 26 2011
a(n) = (n^5 + 2*n^4 + n^3)/2. - Charles R Greathouse IV, Oct 27 2011
G.f.: 2*x*(1+12*x+15*x^2+2*x^3)/(1-x)^6. - Colin Barker, May 04 2012
From Amiram Eldar, Nov 02 2021: (Start)
Sum_{n>=1} 1/a(n) = 2*zeta(3) - Pi^2 + 8.
Sum_{n>=1} (-1)^(n+1)/a(n) = 3*zeta(3)/2 + 12*log(2) - Pi^2/6 - 8. (End)
EXAMPLE
a(3) = (1/2) * (2^3)*(2+1)^2 = 36.
(or)
a(3) = (1^3+1^3) + (1^3+2^3) + (2^3+1^3) + (2^3+2^3) = 36.
MAPLE
A099903:=n->(n^5+2*n^4+n^3)/2; seq(A099903(n), n=1..30); # Wesley Ivan Hurt, Feb 26 2014
MATHEMATICA
Table[(n^5+2*n^4+n^3)/2, {n, 30}] (* Wesley Ivan Hurt, Feb 26 2014 *)
PROG
(PARI) a(n)=(n^5+2*n^4+n^3)/2 \\ Charles R Greathouse IV, Oct 27 2011
(Magma) [(n^5+2*n^4+n^3)/2: n in [1..30]]; // Wesley Ivan Hurt, May 25 2014
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Alexander Adamchuk, Oct 29 2004
STATUS
approved