login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A377509
Expansion of e.g.f. exp(Sum_{k>=1} phi(k)^4 * x^k/k), where phi is the Euler totient function A000010.
3
1, 1, 2, 36, 234, 7290, 54540, 1408680, 23119740, 341788860, 11790437400, 231972879600, 8206299070200, 191673262380600, 6154270418696400, 206515993375692000, 6574758436640394000, 269828090984990538000, 9531096165082736244000, 411037724983993923816000
OFFSET
0,3
LINKS
FORMULA
log(a(n)/n!) ~ 5 * 3^(1/5) * c^(1/5) * n^(4/5) / 2^(7/5), where c = Product_{primes p} (1 - 4/p^2 + 6/p^3 - 4/p^4 + 1/p^5) = 0.286256471511560891173288340086638647956...
MATHEMATICA
nmax = 25; $RecursionLimit->Infinity; a[n_]:=a[n]=If[n==0, 1, Sum[EulerPhi[k]^4 * a[n-k], {k, 1, n}]/n]; Table[a[n]*n!, {n, 0, nmax}]
nmax = 25; CoefficientList[Series[Exp[Sum[EulerPhi[k]^4 * x^k / k, {k, 1, nmax}]], {x, 0, nmax}], x] * Range[0, nmax]!
CROSSREFS
KEYWORD
nonn
AUTHOR
Vaclav Kotesovec, Oct 30 2024
STATUS
approved