login
A099904
Numerator of sum of all matrix elements of N X N matrix M(i,j) = i^3+j^3, (i,j = 1..n) divided by n!.
1
2, 18, 36, 100, 75, 147, 98, 18, 45, 605, 121, 169, 1183, 7, 1, 289, 289, 361, 361, 1, 11, 5819, 529, 1, 13, 13, 1, 841, 841, 961, 961, 1, 17, 17, 1, 1369, 26011, 19, 1, 1681, 1681, 1849, 1849, 1, 23, 50807, 2209, 1, 1, 1, 1, 2809, 2809, 1, 1, 1, 29, 100949, 3481, 3721
OFFSET
1,1
COMMENTS
Sum M(i,j) (i,j = 1..n) is A099903(n). a(n) is an irregular sequence with highest champions belonging to Pentagonal pyramidal numbers n^2*(n+1)/2 (A002411) and n/2*(n+1)^2 (A006002).
FORMULA
a(n) = Numerator[1/n!*Sum[Sum[(i^3+j^3), {i, 1, n}], {j, 1, n}]] a(n) = Numerator[1/2 * (n^3)*(n+1)^2 /n! ].
EXAMPLE
A099903(n)/n! begins 2, 18, 36, 100/3, 75/4, 147/20, 98/45, 18/35, 45/448, ... So a(6) = 147.
MATHEMATICA
Table[ Numerator[ Sum[(i^3 + j^3), {i, n}, {j, n}]/n! ], {n, 60}]
CROSSREFS
KEYWORD
nonn
AUTHOR
Alexander Adamchuk, Oct 29 2004
STATUS
approved