OFFSET
0,4
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 0..600
Index entries for linear recurrences with constant coefficients, signature (6,-15,20,-15,6,-1).
FORMULA
a(n) = Sum_{j=1..n-2} Sum_{i=1..n-2} (i^3 + j^3)/2. - Alexander Adamchuk, Oct 24 2004
G.f.: x^2*(1 + 12*x + 15*x^2 + 2*x^3)/(1 - x)^6. - Colin Barker, May 04 2012
a(n) = Sum_{i=0..n-1} (n-1)*(n-1-i)^3 for n>0. - Bruno Berselli, Oct 31 2017
From Amiram Eldar, Feb 13 2023: (Start)
a(n) = A099903(n-1)/2.
Sum_{n>=2} 1/a(n) = 16 - 2*Pi^2 + 4*zeta(3).
Sum_{n>=2} (-1)^n/a(n) = 24*log(2) - 16 - Pi^2/3 + 3*zeta(3). (End)
MATHEMATICA
Table[n^2*(n-1)^3/4, {n, 0, 100}]
PROG
(Magma) [n^2*(n-1)^3/4: n in [0..60]]; // Vincenzo Librandi, Apr 26 2011
(PARI) a(n)=n^2*(n-1)^3/4 \\ Charles R Greathouse IV, Oct 07 2015
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
STATUS
approved