

A019587


The left budding sequence: # of i such that 0<i<=n and 0 < {tau*i} <= {tau*n}, where {} is fractional part.


6



1, 1, 3, 2, 1, 5, 3, 8, 5, 2, 9, 5, 1, 10, 5, 15, 9, 3, 15, 8, 21, 13, 5, 20, 11, 2, 19, 9, 27, 16, 5, 25, 13, 1, 23, 10, 33, 19, 5, 30, 15, 41, 25, 9, 37, 20, 3, 33, 15, 46, 27, 8, 41, 21, 55, 34, 13, 49, 27, 5, 43, 20, 59, 35, 11, 52, 27, 2, 45, 19, 63, 36, 9, 55, 27, 74, 45, 16, 65
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,3


COMMENTS

A019587+A194733=A000027.


REFERENCES

J. H. Conway, personal communication.


LINKS

Reinhard Zumkeller, Table of n, a(n) for n = 1..1000
N. J. A. Sloane, Classic Sequences


EXAMPLE

{r}=0.61...; {2r}=0.23...; {3r}=0.85...; {4r}=0.47...;
so that a(4)=2.


MATHEMATICA

r = GoldenRatio; p[x_] := FractionalPart[x];
u[n_, k_] := If[p[k*r] <= p[n*r], 1, 0]
v[n_, k_] := If[p[k*r] > p[n*r], 1, 0]
s[n_] := Sum[u[n, k], {k, 1, n}]
t[n_] := Sum[v[n, k], {k, 1, n}]
Table[s[n], {n, 1, 100}] (* A019587 *)
Table[t[n], {n, 1, 100}] (* A194733 *)
(* Clark Kimberling, Sep 02 2011 *)


PROG

(Haskell)
a019587 n = length $ filter (<= nTau) $
map (snd . properFraction . (* tau) . fromInteger) [1..n]
where (_, nTau) = properFraction (tau * fromInteger n)
tau = (1 + sqrt 5) / 2
 Reinhard Zumkeller, Jan 28 2012


CROSSREFS

Cf. A019588, A194733, A193738.
Sequence in context: A171746 A113977 A183162 * A102427 A080883 A021315
Adjacent sequences: A019584 A019585 A019586 * A019588 A019589 A019590


KEYWORD

nonn,easy,nice


AUTHOR

N. J. A. Sloane and J. H. Conway


EXTENSIONS

Extended by Ray Chandler, Apr 18 2009


STATUS

approved



