login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A194733
Number of k < n such that {k*r} > {n*r}, where { } = fractional part, r = (1+sqrt(5))/2 (the golden ratio).
4
0, 1, 0, 2, 4, 1, 4, 0, 4, 8, 2, 7, 12, 4, 10, 1, 8, 15, 4, 12, 0, 9, 18, 4, 14, 24, 8, 19, 2, 14, 26, 7, 20, 33, 12, 26, 4, 19, 34, 10, 26, 1, 18, 35, 8, 26, 44, 15, 34, 4, 24, 44, 12, 33, 0, 22, 44, 9, 32, 55, 18, 42, 4, 29, 54, 14, 40, 66, 24, 51, 8, 36, 64, 19, 48, 2, 32
OFFSET
1,4
COMMENTS
The maximum possible value of a(n) is n-1. - Michael B. Porter, Jan 29 2012
LINKS
FORMULA
a(n)+A019587(n)=n.
EXAMPLE
r = 1.618, 2r = 3.236, 3r = 4.854, and 4r = 6.472, where r=(1+sqrt(5))/2. The fractional part of 4r is 0.472, which is less than the fractional parts of two of {r, 2r, 3r}, so a(4) = 2. - Michael B. Porter, Jan 29 2012
MAPLE
Digits := 100;
A194733 := proc(n::posint)
local a, k, phi, kfrac, nfrac ;
phi := (1+sqrt(5))/2 ;
a :=0 ;
nfrac := n*phi-floor(n*phi) ;
for k from 1 to n-1 do
kfrac := k*phi-floor(k*phi) ;
if evalf(kfrac-nfrac) > 0 then
a := a+1 ;
end if;
end do:
a ;
end proc:
seq(A194733(n), n=1..100) ; # R. J. Mathar, Aug 13 2021
MATHEMATICA
r = GoldenRatio; p[x_] := FractionalPart[x];
u[n_, k_] := If[p[k*r] <= p[n*r], 1, 0]
v[n_, k_] := If[p[k*r] > p[n*r], 1, 0]
s[n_] := Sum[u[n, k], {k, 1, n}]
t[n_] := Sum[v[n, k], {k, 1, n}]
Table[s[n], {n, 1, 100}] (* A019587 *)
Table[t[n], {n, 1, 100}] (* A194733 *)
PROG
(Haskell)
a194733 n = length $ filter (nTau <) $
map (snd . properFraction . (* tau) . fromInteger) [1..n]
where (_, nTau) = properFraction (tau * fromInteger n)
tau = (1 + sqrt 5) / 2
-- Reinhard Zumkeller, Jan 28 2012
CROSSREFS
Sequence in context: A371767 A157284 A361523 * A143973 A011167 A014176
KEYWORD
nonn
AUTHOR
Clark Kimberling, Sep 02 2011
STATUS
approved