OFFSET
0,5
LINKS
G. C. Greubel, Rows n = 0..25 of the triangle, flattened
J. Baik, T. Kriecherbauer, K. D. T.-R. McLaughlin, P. D. Miller, Uniform asymptotics for polynomials orthogonal with respect to a general class of discrete weights and universality results for associated ensembles: announcement of results, International Mathematics Research Notices vol 2003, (2003) 821-858.
V. Gorin, Non-intersecting paths and Hahn orthogonal polynomial ensemble, arXiv:0708.2349 [math.PR], 2007.
FORMULA
T(n, k, m) = (m+1)^n*binomial(n,k)*f(n,m)*f(k,n-m)/n!, with T(n, 0, m) = 1, where f(n, k) = Product_{j=1..n} ( (1 - (k+1)^J)/(-k)^j ), f(n, 0) = n!, and m = 0.
EXAMPLE
Triangle begins as:
1;
1, 1;
1, 2, 4;
1, 3, 15, 105;
1, 4, 36, 744, 29016;
1, 5, 70, 3010, 389795, 121226245;
1, 6, 120, 9120, 2736000, 3065414400, 10017774259200;
1, 7, 189, 22995, 13452075, 37781497845, 471626437599135, 20185139902805378865;
MATHEMATICA
f[n_, k_]:= If[k==0, n!, QPochhammer[k+1, k+1, n]/(-k)^n];
T[n_, k_, m_]:= If[n==0, 1, (m+1)^n**Binomial[n, k]*f[n, m]*f[k, n-m]/n!];
Table[T[n, k, 0], {n, 0, 10}, {k, 0, n}]//Flatten (* modified by G. C. Greubel, Jan 11 2022 *)
PROG
(Sage)
from sage.combinat.q_analogues import q_pochhammer
def f(n, k): return factorial(n) if (k==0) else q_pochhammer(n, k+1, k+1)/(-k)^n
def T(n, k, m): return 1 if (k==0) else (m+1)^n*binomial(n, k)*f(n, m)*f(k, n-m)/factorial(n)
[[T(n, k, 0) for k in (0..n)] for n in (0..10)] # G. C. Greubel, Jan 11 2022
CROSSREFS
KEYWORD
AUTHOR
Roger L. Bagula, Feb 26 2009
EXTENSIONS
Edited by G. C. Greubel, Jan 11 2022
STATUS
approved