OFFSET
0,2
LINKS
G. C. Greubel, Rows n = 0..30 of the triangle, flattened
J. Baik, T. Kriecherbauer, K. D. T.-R. McLaughlin, P. D. Miller, Uniform asymptotics for polynomials orthogonal with respect to a general class of discrete weights and universality results for associated ensembles: announcement of results, International Mathematics Research Notices vol 2003, (2003) 821-858.
V. Gorin, Non-intersecting paths and Hahn orthogonal polynomial ensemble, arXiv preprint arXiv:0708.2349 [math.PR], 2007.
FORMULA
T(n, k, m) = (m+1)^n*t(n, m)*t(k, n-m)/(k! * (n-k)!), where T(0, k, m) = 1, t(n, k) = Product_{j=1..n} ( Sum_{i=0..j-1} (m+1)^i ), and t(n, 0) = n!.
T(n, k, m) = (1/n!)*binomial(n, k)*(m+1)^n*t(n, m)*t(k, n-m), with T(1, k, m) = 2, and t(n, k) = (1/m^n)*Product_{j=1..n} ((m+1)^j - 1). - G. C. Greubel, Jul 09 2021
EXAMPLE
Triangle begins as:
1;
2, 2;
6, 12, 18;
28, 84, 336, 1456;
210, 840, 6300, 88200, 1874250;
2604, 13020, 156240, 4843440, 377788320, 59010535584;
MATHEMATICA
(* First program *)
t[n_, k_] = If[k==0, n!, Product[Sum[(k+1)^i, {i, 0, j-1}], {j, n}]];
T[n_, k_, m_] = If[n==0, 1, ((m+1)^n*t[n, m]*t[k, n-m])/(k!*(n-k)!)];
Flatten@Table[T[n, k, 1], {n, 0, 10}, {k, 0, n}]
(* Second program *)
t[n_, m_] = (1/m^n)*Product[(m+1)^j - 1, {j, n}];
T[n_, k_, m_] = If[n==1, 2, Binomial[n, k]*(m+1)^n*t[n, m]*t[k, n-m]/n!];
Table[T[n, k, 1], {n, 0, 10}, {k, 0, n}]//Flatten (* G. C. Greubel, Jul 09 2021 *)
PROG
(Sage)
def t(n, m): return (1/m^n)*product( (m+1)^j -1 for j in (1..n) )
def T(n, k, m): return 2 if n==1 else binomial(n, k)*(m+1)^n*t(n, m)*t(k, n-m)/factorial(n)
flatten([[T(n, k, 1) for k in (0..n)] for n in (0..10)]) # G. C. Greubel, Jul 09 2021
CROSSREFS
KEYWORD
AUTHOR
Roger L. Bagula, Feb 26 2009
EXTENSIONS
Edited by G. C. Greubel, Jul 09 2021
STATUS
approved