login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 56th year, we are closing in on 350,000 sequences, and we’ve crossed 9,700 citations (which often say “discovered thanks to the OEIS”).

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A320068 Expansion of Product_{k>0} 1/theta_3(q^k), where theta_3() is the Jacobi theta function. 11
1, -2, 2, -6, 12, -18, 30, -50, 84, -132, 198, -306, 476, -706, 1026, -1522, 2234, -3202, 4564, -6506, 9224, -12934, 17982, -24982, 34612, -47496, 64798, -88340, 119944, -161814, 217462, -291562, 389642, -518442, 687222, -908934, 1199040, -1575730, 2064466, -2699378, 3520540 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

LINKS

Vaclav Kotesovec, Table of n, a(n) for n = 0..10000 (terms 0..1000 from Seiichi Manyama)

Eric Weisstein's World of Mathematics, Jacobi Theta Functions

FORMULA

Convolution inverse of A320067.

Expansion of Product_{k>0} (eta(q^k)*eta(q^(4*k)))^2 / eta(q^(2*k))^5.

Expansion of Product_{k>0} theta_4(q^(2*k-1))/theta_4(q^(2*k)), where theta_4() is the Jacobi theta function. - Seiichi Manyama, Oct 26 2018

MATHEMATICA

nmax = 50; CoefficientList[Series[1/Product[EllipticTheta[3, 0, x^k], {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Oct 05 2018 *)

nmax = 50; CoefficientList[Series[Product[(1 + x^(2*k*j))^2/((1 - x^(k*j))*(1 + x^(k*j))^3), {k, 1, nmax}, {j, 1, Floor[nmax/k] + 1}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Oct 08 2018 *)

PROG

(PARI) m=50; x='x+O('x^m); Vec(prod(k=1, 2*m, prod(j=1, floor(2*m/k)+1, (1 + x^(2*k*j))^2/((1 - x^(k*j))*(1 + x^(k*j))^3) ))) \\ G. C. Greubel, Oct 29 2018

(MAGMA) m:=50; R<x>:=PowerSeriesRing(Integers(), m); Coefficients(R!((&*[(&*[(1 + x^(2*k*j))^2/((1 - x^(k*j))*(1 + x^(k*j))^3): j in [1..(Floor(2*m/k)+1)]]): k in [1..2*m]]))); // G. C. Greubel, Oct 29 2018

CROSSREFS

Cf. A000122, A004402, A320067, A320069, A320070, A320968, A320992.

Sequence in context: A290518 A242882 A157285 * A345988 A275439 A173392

Adjacent sequences:  A320065 A320066 A320067 * A320069 A320070 A320071

KEYWORD

sign

AUTHOR

Seiichi Manyama, Oct 05 2018

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 7 22:50 EST 2021. Contains 349590 sequences. (Running on oeis4.)