login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A242882 Number of compositions of n into parts with distinct multiplicities. 29
1, 1, 2, 2, 6, 12, 16, 40, 60, 82, 216, 538, 788, 2034, 3740, 6320, 13336, 27498, 42936, 93534, 173520, 351374, 734650, 1592952, 3033194, 6310640, 12506972, 25296110, 49709476, 101546612, 195037028, 391548336, 764947954, 1527004522, 2953533640, 5946359758 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

LINKS

Vaclav Kotesovec, Table of n, a(n) for n = 0..264 (terms 0..200 from Alois P. Heinz)

Vaclav Kotesovec, What is the limit a(n)/2^n ?

EXAMPLE

a(0) = 1: the empty composition.

a(1) = 1: [1].

a(2) = 2: [1,1], [2].

a(3) = 2: [1,1,1], [3].

a(4) = 6: [1,1,1,1], [1,1,2], [1,2,1], [2,1,1], [2,2], [4].

a(5) = 12: [1,1,1,1,1], [1,1,1,2], [1,1,2,1], [1,2,1,1], [2,1,1,1], [1,2,2], [2,1,2], [2,2,1], [1,1,3], [1,3,1], [3,1,1], [5].

MAPLE

b:= proc(n, i, s) option remember; `if`(n=0, add(j, j=s)!,

      `if`(i<1, 0, add(`if`(j>0 and j in s, 0,

      b(n-i*j, i-1, `if`(j=0, s, s union {j}))/j!), j=0..n/i)))

    end:

a:= n-> b(n$2, {}):

seq(a(n), n=0..45);

MATHEMATICA

b[n_, i_, s_] := b[n, i, s] = If[n == 0, Sum[j, {j, s}]!, If[i < 1, 0, Sum[If[j > 0 && MemberQ[s, j], 0, b[n - i*j, i - 1, If[j == 0, s, s ~Union~ {j}]]/j!], {j, 0, n/i}]]];

a[n_] := b[n, n, {}];

Table[a[n], {n, 0, 45}] (* Jean-Fran├žois Alcover, May 17 2018, translated from Maple *)

PROG

(PARI) a(n)={((r, k, b, w)->if(!k||!r, if(r, 0, w!), sum(m=0, r\k, if(!m || !bittest(b, m), self()(r-k*m, k-1, bitor(b, 1<<m), w+m)/m!))))(n, n, 1, 0)} \\ Andrew Howroyd, Aug 31 2019

CROSSREFS

Row sums of A242887 and of A242896.

Cf. A098859 (the same for partitions).

Sequence in context: A262501 A225422 A290518 * A157285 A320068 A275439

Adjacent sequences:  A242879 A242880 A242881 * A242883 A242884 A242885

KEYWORD

nonn

AUTHOR

Alois P. Heinz, May 25 2014

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 4 17:14 EDT 2020. Contains 334828 sequences. (Running on oeis4.)