The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A242896 Number T(n,k) of compositions of n into k parts with distinct multiplicities, where parts are counted without multiplicities; triangle T(n,k), n>=0, 0<=k<=max{i:A000292(i)<=n}, read by rows. 10
 1, 0, 1, 0, 2, 0, 2, 0, 3, 3, 0, 2, 10, 0, 4, 12, 0, 2, 38, 0, 4, 56, 0, 3, 79, 0, 4, 152, 60, 0, 2, 251, 285, 0, 6, 284, 498, 0, 2, 594, 1438, 0, 4, 920, 2816, 0, 4, 1108, 5208, 0, 5, 2136, 11195, 0, 2, 3402, 24094, 0, 6, 4407, 38523, 0, 2, 8350, 85182 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,5 LINKS Alois P. Heinz, Rows n = 0..200, flattened EXAMPLE T(5,1) = 2: [1,1,1,1,1], [5]. T(5,2) = 10: [1,1,1,2], [1,1,2,1], [1,2,1,1], [2,1,1,1], [1,2,2], [2,1,2], [2,2,1], [1,1,3], [1,3,1], [3,1,1]. Triangle T(n,k) begins:   1;   0, 1;   0, 2;   0, 2;   0, 3,   3;   0, 2,  10;   0, 4,  12;   0, 2,  38;   0, 4,  56;   0, 3,  79;   0, 4, 152, 60; MAPLE b:= proc(n, i, s) option remember; `if`(n=0, add(j, j=s)!,       `if`(i<1, 0, expand(add(`if`(j>0 and j in s, 0, `if`(j=0, 1, x)*        b(n-i*j, i-1, `if`(j=0, s, s union {j}))/j!), j=0..n/i))))     end: T:= n-> (p-> seq(coeff(p, x, i), i=0..degree(p)))(b(n\$2, {})): seq(T(n), n=0..16); MATHEMATICA b[n_, i_, s_List] := b[n, i, s] = If[n == 0, Total[s]!, If[i<1, 0, Expand[ Sum[ If[j>0 && MemberQ[s, j], 0, If[j == 0, 1, x]*b[n-i*j, i-1, If[j == 0, s, s ~Union~ {j}]]/j!], {j, 0, n/i}]]]]; T[n_] := Function[{p}, Table[Coefficient[p, x, i], {i, 0, Exponent[p, x]}]][b[n, n, {}]]; Table[T[n], {n, 0, 16}] // Flatten (* Jean-François Alcover, Feb 11 2015, after Alois P. Heinz *) CROSSREFS Columns k=0-7 give: A000007, A000005, A242900, A246230, A246231, A246232, A246233, A246234. Row sums give A242882. Cf. A182485 (the same for partitions), A242887. Sequence in context: A319071 A316432 A046522 * A240183 A112631 A158706 Adjacent sequences:  A242893 A242894 A242895 * A242897 A242898 A242899 KEYWORD nonn,tabf AUTHOR Alois P. Heinz, May 25 2014 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 13 19:30 EDT 2020. Contains 336451 sequences. (Running on oeis4.)