login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A242896 Number T(n,k) of compositions of n into k parts with distinct multiplicities, where parts are counted without multiplicities; triangle T(n,k), n>=0, 0<=k<=max{i:A000292(i)<=n}, read by rows. 10
1, 0, 1, 0, 2, 0, 2, 0, 3, 3, 0, 2, 10, 0, 4, 12, 0, 2, 38, 0, 4, 56, 0, 3, 79, 0, 4, 152, 60, 0, 2, 251, 285, 0, 6, 284, 498, 0, 2, 594, 1438, 0, 4, 920, 2816, 0, 4, 1108, 5208, 0, 5, 2136, 11195, 0, 2, 3402, 24094, 0, 6, 4407, 38523, 0, 2, 8350, 85182 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,5

LINKS

Alois P. Heinz, Rows n = 0..200, flattened

EXAMPLE

T(5,1) = 2: [1,1,1,1,1], [5].

T(5,2) = 10: [1,1,1,2], [1,1,2,1], [1,2,1,1], [2,1,1,1], [1,2,2], [2,1,2], [2,2,1], [1,1,3], [1,3,1], [3,1,1].

Triangle T(n,k) begins:

  1;

  0, 1;

  0, 2;

  0, 2;

  0, 3,   3;

  0, 2,  10;

  0, 4,  12;

  0, 2,  38;

  0, 4,  56;

  0, 3,  79;

  0, 4, 152, 60;

MAPLE

b:= proc(n, i, s) option remember; `if`(n=0, add(j, j=s)!,

      `if`(i<1, 0, expand(add(`if`(j>0 and j in s, 0, `if`(j=0, 1, x)*

       b(n-i*j, i-1, `if`(j=0, s, s union {j}))/j!), j=0..n/i))))

    end:

T:= n-> (p-> seq(coeff(p, x, i), i=0..degree(p)))(b(n$2, {})):

seq(T(n), n=0..16);

MATHEMATICA

b[n_, i_, s_List] := b[n, i, s] = If[n == 0, Total[s]!, If[i<1, 0, Expand[ Sum[ If[j>0 && MemberQ[s, j], 0, If[j == 0, 1, x]*b[n-i*j, i-1, If[j == 0, s, s ~Union~ {j}]]/j!], {j, 0, n/i}]]]]; T[n_] := Function[{p}, Table[Coefficient[p, x, i], {i, 0, Exponent[p, x]}]][b[n, n, {}]]; Table[T[n], {n, 0, 16}] // Flatten (* Jean-Fran├žois Alcover, Feb 11 2015, after Alois P. Heinz *)

CROSSREFS

Columns k=0-7 give: A000007, A000005, A242900, A246230, A246231, A246232, A246233, A246234.

Row sums give A242882.

Cf. A182485 (the same for partitions), A242887.

Sequence in context: A319071 A316432 A046522 * A240183 A112631 A158706

Adjacent sequences:  A242893 A242894 A242895 * A242897 A242898 A242899

KEYWORD

nonn,tabf

AUTHOR

Alois P. Heinz, May 25 2014

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified August 13 19:30 EDT 2020. Contains 336451 sequences. (Running on oeis4.)