login
A240183
Number of partitions of n such that (greatest part) = (multiplicity of least part).
3
0, 1, 0, 0, 2, 0, 2, 0, 3, 3, 4, 2, 9, 3, 10, 10, 17, 11, 26, 19, 36, 33, 48, 47, 79, 71, 101, 109, 149, 151, 215, 216, 293, 318, 404, 443, 575, 611, 773, 864, 1068, 1175, 1458, 1609, 1964, 2210, 2642, 2970, 3577, 3995, 4753, 5369, 6332, 7138, 8414, 9476
OFFSET
0,5
FORMULA
A240178(n) + a(n) + A240184(n) = A000041(n) for n >= 0.
EXAMPLE
a(8) counts these 3 partitions: 41111, 32111, 22211.
MATHEMATICA
z = 60; f[n_] := f[n] = IntegerPartitions[n];
t1 = Table[Count[f[n], p_ /; Max[p] < Count[p, Min[p]]], {n, 0, z}] (* A240178 except for n=0 *)
t2 = Table[Count[f[n], p_ /; Max[p] <= Count[p, Min[p]]], {n, 0, z}] (* A240182 *)
t3 = Table[Count[f[n], p_ /; Max[p] == Count[p, Min[p]]], {n, 0, z}] (* A240183 *)
t4 = Table[Count[f[n], p_ /; Max[p] > Count[p, Min[p]]], {n, 0, z}] (* A240184 *)
t5 = Table[Count[f[n], p_ /; Max[p] >= Count[p, Min[p]]], {n, 0, z}] (* A240179 *)
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, Apr 02 2014
STATUS
approved