login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A240178 Number of partitions of n such that (least part) < (multiplicity of greatest part). 7
0, 0, 1, 1, 1, 2, 3, 4, 5, 7, 9, 13, 16, 22, 27, 36, 44, 59, 71, 93, 114, 144, 176, 223, 268, 336, 407, 502, 605, 744, 891, 1088, 1301, 1574, 1879, 2265, 2687, 3224, 3822, 4557, 5384, 6399, 7535, 8921, 10481, 12354, 14481, 17022, 19888, 23307, 27178, 31745 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,6

COMMENTS

For n >=1, a(n) is also the number of partitions of n such that (least part) > (multiplicity of greatest part), as well as the number of partitions p of n such that min(p) < min(c(p)), where c = conjugate.

LINKS

Table of n, a(n) for n=0..51.

FORMULA

a(n) = A240179(n) - A240180(n), for n >= 0.

EXAMPLE

a(6) counts these 3 partitions:  222, 2211, 111111.

MATHEMATICA

z = 60; f[n_] := f[n] = IntegerPartitions[n]; Table[Count[f[n], p_ /; Min[p] < Count[p, Max[p]]], {n, 0, z}]  (* A240178 *)

Table[Count[f[n], p_ /; Min[p] <= Count[p, Max[p]]], {n, 0, z}] (* A240179 *)

Table[Count[f[n], p_ /; Min[p] == Count[p, Max[p]]], {n, 0, z}] (* A240180 *)

Table[Count[f[n], p_ /; Min[p] > Count[p, Max[p]]], {n, 0, z}]  (* A240178, n>0 *)

Table[Count[f[n], p_ /; Min[p] >= Count[p, Max[p]]], {n, 0, z}] (* A240179, n>0 *)

CROSSREFS

Cf. A240179, A240180.

Sequence in context: A250553 A026450 A280451 * A039863 A036802 A333265

Adjacent sequences:  A240175 A240176 A240177 * A240179 A240180 A240181

KEYWORD

nonn,easy

AUTHOR

Clark Kimberling, Apr 02 2014

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 22 06:08 EDT 2020. Contains 337289 sequences. (Running on oeis4.)