OFFSET
0,6
COMMENTS
For n >=1, a(n) is also the number of partitions of n such that (least part) > (multiplicity of greatest part), as well as the number of partitions p of n such that min(p) < min(c(p)), where c = conjugate.
EXAMPLE
a(6) counts these 3 partitions: 222, 2211, 111111.
MATHEMATICA
z = 60; f[n_] := f[n] = IntegerPartitions[n]; Table[Count[f[n], p_ /; Min[p] < Count[p, Max[p]]], {n, 0, z}] (* A240178 *)
Table[Count[f[n], p_ /; Min[p] <= Count[p, Max[p]]], {n, 0, z}] (* A240179 *)
Table[Count[f[n], p_ /; Min[p] == Count[p, Max[p]]], {n, 0, z}] (* A240180 *)
Table[Count[f[n], p_ /; Min[p] > Count[p, Max[p]]], {n, 0, z}] (* A240178, n>0 *)
Table[Count[f[n], p_ /; Min[p] >= Count[p, Max[p]]], {n, 0, z}] (* A240179, n>0 *)
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, Apr 02 2014
STATUS
approved