OFFSET
1,3
COMMENTS
LINKS
Clark Kimberling, Table of n, a(n) for n = 1..200
EXAMPLE
First 15 rows:
0 ... 1
2
2 ... 0 ... 1
2 ... 3
2 ... 4 ... 1
4 ... 6 ... 0 ...1
4 ... 8 ... 3
8 ... 8 ... 5 ... 1
10 .. 9 ... 11
10 .. 22 .. 8 ... 1 ... 1
14 .. 22 .. 17 .. 3
18 .. 34 .. 19 .. 5 ... 1
18 .. 50 .. 21 .. 12
26 .. 60 .. 34 .. 13 .. 2
30 .. 74 .. 52 .. 19 .. 0 .. 1
In the following table, p and c(p) denote a partition of 6 and its conjugate:
p ........ c(p)
6 ........ 111111
51 ....... 21111
42 ....... 2211
411 ...... 3111
33 ....... 222
321 ...... 321
3111 ..... 411
222 ...... 33
2211 ..... 42
21111 .... 51
111111 ... 6
Let I(p) be number of numbers in the intersection of c and c(p); Then I(p) = 0 for 4 choices of p, I(p) = 1 for 6 choices, I(p) = 2 for 0 choices, and I(p) = 3 for 1 choice. Thus, row 6 is 4 6 0 1.
MATHEMATICA
z = 30; conjugatePartition[part_] := Table[Count[#, _?(# >= i &)], {i, First[#]}] &[part]; c = Map[BinCounts[#, {0, 1 + Max[#]}] &[Map[Length, Map[Intersection[#, conjugatePartition[#]] &, IntegerPartitions[#]]]] &, Range[z]]; Flatten[c] (* this sequence *)
Table[Length[c[[n]]], {n, 1, z}] (* A240450 *) (* Peter J. C. Moses, Apr 10 2014 *)
CROSSREFS
KEYWORD
nonn,easy,tabf
AUTHOR
Clark Kimberling, Apr 12 2014
EXTENSIONS
Name corrected by Clark Kimberling, Sep 28 2023
STATUS
approved