login
A029341
Expansion of 1/((1-x^4)(1-x^5)(1-x^9)(1-x^10)).
0
1, 0, 0, 0, 1, 1, 0, 0, 1, 2, 2, 0, 1, 2, 3, 2, 1, 2, 4, 4, 4, 2, 4, 5, 6, 5, 4, 6, 8, 8, 8, 6, 9, 10, 11, 10, 10, 12, 14, 14, 15, 13, 16, 17, 19, 19, 18, 20, 23, 24, 25, 22, 26, 28, 31, 30, 29, 32, 36, 37, 38, 35, 40, 43, 46, 45, 44, 48, 53, 54, 55, 52, 59, 62, 65, 64, 64, 69, 74, 75
OFFSET
0,10
LINKS
Index entries for linear recurrences with constant coefficients, signature (0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 0, 0, -1, -2, -1, 0, 0, 1, 0, 0, 0, 0,1, 1, 0, 0, 0, -1).
FORMULA
G.f.: 1/((1-x^4)(1-x^5)(1-x^9)(1-x^10)). a(n)=a(n-4)+a(n-5)+a(n-10)-a(n-13)-2*a(n-14)-a(n-15)+a(n-18)+a(n-23)+a(n-24)-a(n-28)=-a(-28-n).
MATHEMATICA
CoefficientList[Series[1/((1-x^4)(1-x^5)(1-x^9)(1-x^10)), {x, 0, 90}], x] (* or *) LinearRecurrence[{0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 0, 0, -1, -2, -1, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, -1}, {1, 0, 0, 0, 1, 1, 0, 0, 1, 2, 2, 0, 1, 2, 3, 2, 1, 2, 4, 4, 4, 2, 4, 5, 6, 5, 4, 6, 8}, 90] (* Harvey P. Dale, Dec 01 2015 *)
PROG
(PARI) a(n)=if(n<-27, -a(-28-n), if(n<0, 0, polcoeff(1/((1-x^4)*(1-x^5)*(1-x^9)*(1-x^10))+x*O(x^n), n)))
CROSSREFS
Sequence in context: A292944 A327188 A330270 * A240181 A079070 A354787
KEYWORD
nonn
AUTHOR
STATUS
approved