login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A096994
Number of transient terms if f(x)=phi(sigma(x))=A062401 is iterated at initial value 2^n. Equilibrium terms are listed in A096852.
5
0, 0, 0, 0, 0, 2, 2, 0, 1, 2, 4, 1, 2, 5, 14, 0, 5, 7, 2, 14, 8, 3, 64, 43, 81, 82, 76, 74, 47, 25, 42, 0
OFFSET
0,6
COMMENTS
For transient lengths for iterations of A062401(x) or A062402(x) if started at 2^n, A096994(n) + 1 = A096995(n). Corresponding cycle lengths satisfy A096852(n-1) = A096857(n). Behind these observations several relationships stand, e.g., sigma(A062401(x)) = A062402(sigma(x)) or phi(A062402(x)) = A062401(phi(x)).
EXAMPLE
n=0: trajectory = {1,1,..} so a(0)=0;
n=14: transient-length=14, cycle-length=2, a(14)=14, A096852(14)=2; trajectory ={16384, 27000, 23040, 21600, 17280, 15360, 15488, 13824, 9600, 7680, 7200, 12960, 11880, 11520, [10368,14080], 10368, ...}.
Values of a(n) for n > 31, with -1 signifying transient lengths yet unknown after 10^4 iterations of f(x): -1, 7, 51, 70, 23, 39, 11, -1, 37, 107, 30, -1, 145, 25, 21, 36, -1, -1, -1, -1, 31, -1, 452, -1, 449, 447, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 40, -1, -1, -1, -1, -1, -1, -1, 279, -1. - Michael De Vlieger, May 15 2017
MATHEMATICA
With[{nn = 10^3}, Table[Count[Values@ PositionIndex@ #, k_ /; Length@ k == 1] &@ NestList[EulerPhi@ DivisorSigma[1, #] &, 2^n, nn] /. k_ /; k == nn + 1 -> -1, {n, 31}] ] (* Michael De Vlieger, May 15 2017, Version 10 *)
CROSSREFS
Sequence in context: A240181 A079070 A354787 * A035370 A306706 A163000
KEYWORD
nonn,more
AUTHOR
Labos Elemer, Jul 22 2004
STATUS
approved