login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A163000
Count of integers x in [0,n] satisfying A000120(x) + A000120(n-x) = A000120(n) + 1.
6
0, 0, 1, 0, 1, 2, 2, 0, 1, 2, 4, 4, 2, 4, 4, 0, 1, 2, 4, 4, 4, 8, 8, 8, 2, 4, 8, 8, 4, 8, 8, 0, 1, 2, 4, 4, 4, 8, 8, 8, 4, 8, 12, 16, 8, 16, 16, 16, 2, 4, 8, 8, 8, 16, 16, 16, 4, 8, 16, 16, 8, 16, 16, 0, 1, 2, 4, 4, 4, 8, 8, 8, 4, 8, 12, 16, 8, 16, 16, 16, 4, 8, 12, 16, 12, 24, 24, 32, 8, 16, 24, 32, 16
OFFSET
0,6
COMMENTS
For every solution x, binomial(n,x) is 2 times an odd integer.
A generalization: for every solution 0 <= x <= n of the equation A000120(x) + A000120(n-x) = A000120(n) + r, binomial(n,x) is 2^r times an odd integer.
Apparently this is also the number of 2's in the n-th row of A034931. - R. J. Mathar, Jul 28 2017
LINKS
Kenneth S. Davis and William A. Webb, Pascal's triangle modulo 4, Fib. Quart., 29 (1991), 79-83.
Vladimir Shevelev, Binomial predictors, arXiv:0907.3302 [math.NT], 2009.
L. Spiegelhofer and M. Wallner, Divisibility of binomial coefficients by powers of two, arXiv:1710.10884 [math.NT], 2017.
FORMULA
a(n)=0 iff n=2^k-1, k>=0. a(n)=1 iff n=2^k, k>=1.
Conjecture: a(n) = A033264(n)* 2^(A000120(n)-1); from [Davis & Webb]. - R. J. Mathar, Jul 28 2017
MAPLE
A163000 := proc(n) local a, x; a := 0 ; for x from 0 to n do if A000120(x)+A000120(n-x) = A000120(n)+1 then a := a+1; fi; od: a; end:
seq(A163000(n), n=0..100) ; # R. J. Mathar, Jul 21 2009
MATHEMATICA
okQ[x_, n_] := DigitCount[x, 2, 1] + DigitCount[n - x, 2, 1] == DigitCount[n, 2, 1] + 1; a[n_] := Count[Range[0, n], x_ /; okQ[x, n]]; Table[a[n], {n, 0, 92}] (* Jean-François Alcover, Jul 13 2017 *)
PROG
(PARI) a(n) = my(z=hammingweight(n)+1); sum(x=0, n, hammingweight(x) + hammingweight(n-x) == z); \\ Michel Marcus, Jun 06 2021
CROSSREFS
A001316 and A163577 count binomial coefficients with 2-adic valuation 0 and 2. A275012 gives a measure of complexity of these sequences. - Eric Rowland, Mar 15 2017
Sequence in context: A096994 A035370 A306706 * A303548 A105524 A221459
KEYWORD
nonn,base
AUTHOR
Vladimir Shevelev, Jul 20 2009
EXTENSIONS
Extended beyond a(22) by R. J. Mathar, Jul 21 2009
STATUS
approved