login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A105524
Diagonal sums of number triangle A105522.
1
1, -2, 2, 0, -1, -2, 4, 4, -10, -12, 30, 36, -93, -114, 300, 372, -994, -1244, 3364, 4240, -11578, -14676, 40400, 51448, -142592, -182288, 508166, 651756, -1826037, -2348562, 6608844, 8520564, -24069258, -31097388, 88145436, 114096096, -324391422, -420590652, 1199074584
OFFSET
0,2
FORMULA
G.f.: ((1+2x)sqrt(1+4x^2)-4x^2-2x-1)/(x^2*(sqrt(1+4x^2)-3)). - amended by Georg Fischer, Apr 09 2020
Conjecture: 2*(n+2)*(13*n^2-35*n+6)*a(n) +24*(n-8)*a(n-1) +(91*n^3-375*n^2+152*n+372)*a(n-2) +12*(8-n)*a(n-3) -4*(n-3)*(13*n^2-9*n-16)*a(n-4) = 0. - R. J. Mathar, Nov 09 2012
MATHEMATICA
CoefficientList[Series[((1+2*x)*Sqrt[1+4*x^2]-4*x^2-2*x-1)/(x^2*(Sqrt[1+4*x
^2]-3)), {x, 0, 30}], x] (* Georg Fischer, Apr 09 2020 *)
CROSSREFS
Sequence in context: A306706 A163000 A303548 * A221459 A166387 A000209
KEYWORD
easy,sign
AUTHOR
Paul Barry, Apr 13 2005
STATUS
approved