login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of transient terms if f(x)=phi(sigma(x))=A062401 is iterated at initial value 2^n. Equilibrium terms are listed in A096852.
5

%I #26 Dec 12 2021 20:09:05

%S 0,0,0,0,0,2,2,0,1,2,4,1,2,5,14,0,5,7,2,14,8,3,64,43,81,82,76,74,47,

%T 25,42,0

%N Number of transient terms if f(x)=phi(sigma(x))=A062401 is iterated at initial value 2^n. Equilibrium terms are listed in A096852.

%C For transient lengths for iterations of A062401(x) or A062402(x) if started at 2^n, A096994(n) + 1 = A096995(n). Corresponding cycle lengths satisfy A096852(n-1) = A096857(n). Behind these observations several relationships stand, e.g., sigma(A062401(x)) = A062402(sigma(x)) or phi(A062402(x)) = A062401(phi(x)).

%e n=0: trajectory = {1,1,..} so a(0)=0;

%e n=14: transient-length=14, cycle-length=2, a(14)=14, A096852(14)=2; trajectory ={16384, 27000, 23040, 21600, 17280, 15360, 15488, 13824, 9600, 7680, 7200, 12960, 11880, 11520, [10368,14080], 10368, ...}.

%e Values of a(n) for n > 31, with -1 signifying transient lengths yet unknown after 10^4 iterations of f(x): -1, 7, 51, 70, 23, 39, 11, -1, 37, 107, 30, -1, 145, 25, 21, 36, -1, -1, -1, -1, 31, -1, 452, -1, 449, 447, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 40, -1, -1, -1, -1, -1, -1, -1, 279, -1. - _Michael De Vlieger_, May 15 2017

%t With[{nn = 10^3}, Table[Count[Values@ PositionIndex@ #, k_ /; Length@ k == 1] &@ NestList[EulerPhi@ DivisorSigma[1, #] &, 2^n, nn] /. k_ /; k == nn + 1 -> -1, {n, 31}] ] (* _Michael De Vlieger_, May 15 2017, Version 10 *)

%Y Cf. A096852, A062401.

%K nonn,more

%O 0,6

%A _Labos Elemer_, Jul 22 2004