login
A240674
Number of partitions p of n that are disjoint from their conjugate.
2
1, 0, 2, 2, 2, 2, 4, 4, 8, 10, 10, 14, 18, 18, 26, 30, 36, 44, 60, 64, 82, 96, 114, 130, 164, 176, 222, 248, 296, 338, 406, 450, 550, 620, 726, 816, 968, 1074, 1270, 1418, 1648, 1836, 2150, 2382, 2758, 3080, 3534, 3942, 4538, 5034, 5778, 6416, 7312, 8136, 9258
OFFSET
0,3
COMMENTS
First column of the array at A240181.
FORMULA
a(n) = 2*A114701(n), for n >= 1.
EXAMPLE
a(6) counts these 4 partitions: 6, 33, 222, 111111, of which the respective conjugates are 111111, 222, 33, 6.
MATHEMATICA
z = 30; p[n_, k_] := p[n, k] = IntegerPartitions[n][[k]]; c[p_] := c[p] = Table[Count[#, _?(# >= i &)], {i, First[#]}] &[p]; b[n_] := b[n] = Table[Intersection[p[n, k], c[p[n, k]]], {k, 1, PartitionsP[n]}]; Table[Count[Map[Length, b[n]], 0], {n, 1, z}] (* this sequence *)
Table[Count[Map[Length, b[n]], 1], {n, 1, z}] (* A240675 *)
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, Apr 12 2014
EXTENSIONS
Name corrected by Clark Kimberling, Sep 28 2023
a(0)=1 prepended by Alois P. Heinz, Jul 19 2024
STATUS
approved