login
A240672
Number of the first evil exponents (A001969) in the prime power factorization of (2n)!.
13
0, 1, 0, 0, 0, 2, 0, 3, 0, 1, 0, 0, 4, 0, 0, 0, 0, 2, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 2, 0, 1, 2, 0, 1, 0, 0, 2, 0, 0, 2, 0, 0, 0, 1, 1, 0, 2, 0, 2, 0, 0, 1, 1, 0, 2, 0, 0, 0, 9, 2, 0, 1, 1, 0, 0, 2, 0, 0, 1, 0, 0, 1, 0, 0, 0, 2, 1, 0, 2, 0, 3, 0, 0, 1, 1, 0, 2
OFFSET
1,6
COMMENTS
Conjecture: The sequence is unbounded. (This conjecture does not follow from Chen's theorem.)
LINKS
Y.-G. Chen, On the parity of exponents in the standard factorization of n!, J. Number Theory, 100 (2003), 326-331.
FORMULA
a(n)*A240669(n) = 0.
EXAMPLE
26! = 2^23*3^10*5^6*7^3*11^2*13^2*17*19*23, and the first 4 exponents (23,10,6,3) are evil, so a(13) = 4.
MATHEMATICA
Map[Count[First[Split[Map[EvenQ[DigitCount[#, 2][[1]]]&, Last[Transpose[FactorInteger[(2*#)!]]&[#]]]]], True]&, Range[75]] (* Peter J. C. Moses, Apr 10 2014 *)
KEYWORD
nonn
AUTHOR
Vladimir Shevelev, Apr 10 2014
STATUS
approved