

A240672


Number of the first evil exponents (A001969) in the prime power factorization of (2n)!.


13



0, 1, 0, 0, 0, 2, 0, 3, 0, 1, 0, 0, 4, 0, 0, 0, 0, 2, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 2, 0, 1, 2, 0, 1, 0, 0, 2, 0, 0, 2, 0, 0, 0, 1, 1, 0, 2, 0, 2, 0, 0, 1, 1, 0, 2, 0, 0, 0, 9, 2, 0, 1, 1, 0, 0, 2, 0, 0, 1, 0, 0, 1, 0, 0, 0, 2, 1, 0, 2, 0, 3, 0, 0, 1, 1, 0, 2
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,6


COMMENTS

Conjecture: The sequence is unbounded. (This conjecture does not follow from Chen's theorem.)


LINKS



FORMULA



EXAMPLE

26! = 2^23*3^10*5^6*7^3*11^2*13^2*17*19*23, and the first 4 exponents (23,10,6,3) are evil, so a(13) = 4.


MATHEMATICA

Map[Count[First[Split[Map[EvenQ[DigitCount[#, 2][[1]]]&, Last[Transpose[FactorInteger[(2*#)!]]&[#]]]]], True]&, Range[75]] (* Peter J. C. Moses, Apr 10 2014 *)


CROSSREFS



KEYWORD

nonn


AUTHOR



STATUS

approved



