login
A284975
a(n) is the number of self-conjugate partitions of n which represent Chomp positions with Sprague-Grundy value 4.
0
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 2, 0, 3, 0, 1, 0, 2, 2, 2, 0, 6, 0, 2, 5, 5, 6, 8, 5, 6, 6, 6, 7, 8, 12, 10, 10, 16, 12, 20, 12, 17, 22, 16, 27, 21, 34, 25, 35, 29, 43, 42, 48, 38, 67
OFFSET
1,26
COMMENTS
The number of all Chomp positions with Sprague-Grundy value 4 are given in A284690.
REFERENCES
P. M. Grundy, Mathematics and games, Eureka 2 (1939), 6-8; reprinted (1964), Eureka 27, 9-11.
LINKS
Thomas S. Ferguson, Game Theory (lecture notes + exercise questions for a course on Combinatorial Game Theory).
P. M. Grundy, Mathematics and games, Eureka (The Archimedeans' Journal), No. 2, 1939, pp. 6-8. [Annotated scanned copy. My former colleague and coauthor Florence Jessie MacWilliams (nee Collinson), who was a student at Cambridge University in 1939, gave me this journal. - N. J. A. Sloane, Nov 17 2018]
R. Sprague, Über mathematische Kampfspiele, Tohoku Math. J. 41 (1936), 438-444.
R. Sprague, Über zwei Abarten von Nim, Tohoku Math. J. 43 (1937), 351-354.
CROSSREFS
KEYWORD
nonn
AUTHOR
Thomas J Wolf, Apr 06 2017
STATUS
approved