login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A219202
Number of partitions of n into 8 distinct primes.
5
1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 2, 0, 3, 0, 1, 0, 3, 0, 5, 0, 4, 1, 5, 0, 10, 0, 6, 1, 10, 1, 15, 1, 10, 2, 17, 2, 23, 1, 17, 5, 27, 4, 32, 2, 30, 9, 38, 7, 48, 6, 43, 13, 56, 10, 70, 12, 62, 20, 78, 19, 98, 20, 86, 31, 109, 30, 128, 28, 121, 49, 145, 45, 170
OFFSET
77,11
LINKS
FORMULA
G.f.: Sum_{0<i_1<i_2<...<i_8} x^(Sum_{j=1..8} prime(i_j)).
a(n) = [x^n*y^8] Product_{i>=1} (1+x^prime(i)*y).
MAPLE
b:= proc(n, i) option remember; `if`(n=0, [1, 0$8], `if`(i<1, [0$9],
zip((x, y)->x+y, b(n, i-1), [0, `if`(ithprime(i)>n, [0$8],
b(n-ithprime(i), i-1)[1..8])[]], 0)))
end:
a:= n-> b(n, numtheory[pi](n))[9]:
seq(a(n), n=77..150);
MATHEMATICA
k = 8; b[n_, i_] := b[n, i] = If[n == 0, Join[{1}, Array[0&, k]], If[i<1, Array[0&, k+1] , Plus @@ PadRight[{b[n, i-1], Join[{0}, If[Prime[i]>n, Array[0&, k], Take[b[n-Prime[i], i-1], k]]]}]]]; a[n_] := b[n, PrimePi[n]][[k+1]]; Table[a[n], {n, 77, 150}] (* Jean-François Alcover, Jan 30 2014, after Alois P. Heinz *)
CROSSREFS
Column k=8 of A219180.
Sequence in context: A352288 A243016 A284975 * A341980 A218031 A135523
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Nov 14 2012
STATUS
approved