login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A219180 Number T(n,k) of partitions of n into k distinct prime parts; triangle T(n,k), n>=0, read by rows. 19
1, 0, 1, 0, 1, 0, 1, 1, 0, 1, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 2, 1, 0, 1, 0, 0, 1, 0, 0, 2, 2, 0, 1, 1, 1, 0, 0, 2, 2, 0, 0, 1, 2, 1, 0, 0, 2, 2, 0, 1, 0, 2, 2, 0, 0, 3, 2, 0, 0, 1, 2, 2, 0, 0, 2, 3, 1 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,41

COMMENTS

T(n,k) is defined for all n>=0 and k>=0.  The triangle contains only elements with 0 <= k <= A024936(n).  T(n,k) = 0 for k > A024936(n).  Three rows are empty because there are no partitions of n into distinct prime parts for n in {1,4,6}.

LINKS

Alois P. Heinz, Rows n = 0..1000, flattened

FORMULA

G.f. of column k: Sum_{0<i_1<i_2<...<i_k} x^(Sum_{j=1..k} prime(i_j)).

T(n,k) = [x^n*y^k] Product_{i>=1} (1+x^prime(i)*y).

EXAMPLE

T(0,0) = 1: [], the empty partition.

T(2,1) = 1: [2].

T(5,1) = 1: [5], T(5,2) = 1: [2,3].

T(16,2) = 2: [5,11], [3,13].

Triangle T(n,k) begins:

  1;

  ;

  0, 1;

  0, 1;

  ;

  0, 1, 1;

  ;

  0, 1, 1;

  0, 0, 1;

  0, 0, 1;

  0, 0, 1, 1;

  0, 1;

  0, 0, 1, 1;

MAPLE

b:= proc(n, i) option remember;

      `if`(n=0, [1], `if`(i<1, [], zip((x, y)->x+y, b(n, i-1),

       [0, `if`(ithprime(i)>n, [], b(n-ithprime(i), i-1))[]], 0)))

    end:

T:= proc(n) local l; l:= b(n, numtheory[pi](n));

       while nops(l)>0 and l[-1]=0 do l:= subsop(-1=NULL, l) od; l[]

    end:

seq(T(n), n=0..50);

MATHEMATICA

nn=20; a=Table[Prime[n], {n, 1, nn}]; CoefficientList[Series[Product[1+y x^a[[i]], {i, 1, nn}], {x, 0, nn}], {x, y}]//Grid  (* Geoffrey Critzer, Nov 21 2012 *)

zip[f_, x_List, y_List, z_] := With[{m = Max[Length[x], Length[y]]}, f[PadRight[x, m, z], PadRight[y, m, z]]]; b[n_, i_] := b[n, i] = If[n == 0, {1}, If[i<1, {}, zip[Plus, b[n, i-1], Join[{0}, If[Prime[i] > n, {}, b[n-Prime[i], i-1]]], 0]]]; T[n_] := Module[{l}, l = b[n, PrimePi[n]]; While[Length[l]>0 && l[[-1]] == 0, l = ReplacePart[l, -1 -> Sequence[]]]; l]; Table[T[n], {n, 0, 50}] // Flatten (* Jean-Fran├žois Alcover, Jan 29 2014, after Alois P. Heinz *)

PROG

(PARI)

T(n)={ Vec(prod(k=1, n, 1 + isprime(k)*y*x^k + O(x*x^n))) }

{ my(t=T(20)); for(n=1, #t, print(if(t[n]!=0, Vecrev(t[n]), []))) } \\ Andrew Howroyd, Dec 22 2017

CROSSREFS

Columns k=0-10 give: A000007, A010051, A117929, A125688, A219198, A219199, A219200, A219201, A219202, A219203, A219204.

Row lengths are 1 + A024936(n).

Row sums give: A000586.

Last elements of rows give: A219181.

Row maxima give: A219182.

Least n with T(n,k) > 0 is A007504(k).

Cf. A000040, A117278, A219107.

Sequence in context: A085252 A250214 A073423 * A179952 A321930 A134023

Adjacent sequences:  A219177 A219178 A219179 * A219181 A219182 A219183

KEYWORD

nonn,look,tabf

AUTHOR

Alois P. Heinz, Nov 13 2012

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified February 26 17:19 EST 2020. Contains 332293 sequences. (Running on oeis4.)