The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A179952 Add 1 to all the divisors of n. a(n)=number of perfect squares in the set. 1
 0, 0, 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 0, 0, 2, 1, 0, 1, 0, 0, 1, 0, 0, 3, 0, 0, 1, 0, 0, 2, 0, 1, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 2, 0, 0, 4, 0, 0, 1, 0, 0, 1, 0, 1, 1, 0, 0, 2, 0, 0, 2, 1, 0, 1, 0, 0, 1, 1, 0, 3, 0, 0, 2, 0, 0, 1, 0, 2, 1, 0, 0, 1, 0, 0, 1, 1, 0, 2, 0, 0, 1, 0, 0, 4, 0, 0, 2, 0, 0, 1, 0, 1, 3 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,15 COMMENTS a(24)=3 because the divisors of 24 are 1,2,3,4,6,8,12,24. Adding one to each gives 2,3,4,5,7,9,13,25 and of those 4,9 and 25 are perfect squares. Number of k>=2 such that both k-1 and k+1 divide n. - Joerg Arndt, Jan 06 2015 LINKS Michael De Vlieger, Table of n, a(n) for n = 1..10000 FORMULA G.f.: sum(n>=2, x^(n^2-1) / (1 - x^(n^2-1)) ). - Joerg Arndt, Jan 06 2015 MAPLE N:= 1000: # to get a(1) to a(N) A:= Vector(N): for n from 2 to floor(sqrt(N+1)) do   for k from 1 to floor(N/(n^2-1)) do       A[k*(n^2-1)]:= A[k*(n^2-1)]+1    od od; convert(A, list); # Robert Israel, Jan 06 2015 MATHEMATICA a179952[n_] := Count[Sqrt[Divisors[#] + 1], _Integer] & /@ Range@n; a179952[105] (* Michael De Vlieger, Jan 06 2015 *) PROG (PARI) a(n) = sumdiv(n, d, issquare(d+1)); \\ Michel Marcus, Jan 06 2015 CROSSREFS Sequence in context: A250214 A073423 A219180 * A321930 A134023 A257931 Adjacent sequences:  A179949 A179950 A179951 * A179953 A179954 A179955 KEYWORD nonn AUTHOR Jeff Burch, Aug 03 2010 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 16 18:51 EDT 2021. Contains 345067 sequences. (Running on oeis4.)