The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A321930 Tetrangle where T(n,H(u),H(v)) is the coefficient of s(v) in f(u), where u and v are integer partitions of n, H is Heinz number, f is forgotten symmetric functions, and s is Schur functions. 0
 1, -1, 1, 1, 0, 1, -1, 1, -2, 1, 0, 1, 0, 0, -1, 0, 1, -1, 1, 1, 1, -1, 0, 0, 2, -1, -1, 1, 0, -3, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, -1, 0, 0, 1, -1, 1, -2, 1, 1, -1, -1, 1, 0, -2, 2, -1, 1, -1, 0, 0, 3, -2, 1, 0, 0, 0, 0, 3, -1, -1, 0, 1, 0, 0, -4, 1, 0, 0, 0, 0 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,9 COMMENTS The Heinz number of an integer partition (y_1, ..., y_k) is prime(y_1) * ... * prime(y_k). LINKS Wikipedia, Symmetric polynomial EXAMPLE Tetrangle begins (zeros not shown):   (1):  1 .   (2):  -1  1   (11):  1 .   (3):    1 -1  1   (21):  -2  1   (111):  1 .   (4):    -1     1 -1  1   (22):    1  1 -1   (31):    2 -1 -1  1   (211):  -3     1   (1111):  1 .   (5):      1 -1        1 -1  1   (41):    -2  1  1 -1 -1  1   (32):    -2  2 -1  1 -1   (221):    3 -2  1   (311):    3 -1 -1     1   (2111):  -4  1   (11111):  1 For example, row 14 gives: f(32) = -2s(5) - s(32) + 2s(41) + s(221) - s(311). CROSSREFS This is a regrouping of the triangle A321894. Cf. A008480, A056239, A124794, A124795, A153452, A215366, A296188, A300121, A319191, A319193, A321912-A321935. Sequence in context: A073423 A219180 A179952 * A134023 A257931 A325699 Adjacent sequences:  A321927 A321928 A321929 * A321931 A321932 A321933 KEYWORD sign,tabf AUTHOR Gus Wiseman, Nov 23 2018 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified July 27 10:44 EDT 2021. Contains 346304 sequences. (Running on oeis4.)