This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A321927 Tetrangle where T(n,H(u),H(v)) is the coefficient of m(v) in f(u), where u and v are integer partitions of n, H is Heinz number, m is monomial symmetric functions, and f is forgotten symmetric functions. 0
 1, -1, 0, 1, 1, 1, 0, 0, -2, -1, 0, 1, 1, 1, -1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 2, 0, 1, 0, 0, -3, -2, -2, -1, 0, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, -2, -1, 0, 0, 0, 0, 0, -2, 0, -1, 0, 0, 0, 0, 3, 1, 2, 1, 0, 0, 0, 3, 2, 1, 0, 1, 0, 0, -4, -3, -3, -2, -2, -1, 0 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,9 COMMENTS The Heinz number of an integer partition (y_1, ..., y_k) is prime(y_1) * ... * prime(y_k). Also the coefficient of f(v) in m(u). LINKS Wikipedia, Symmetric polynomial EXAMPLE Tetrangle begins (zeroes not shown):   (1):  1 .   (2):  -1   (11):  1  1 .   (3):    1   (21):  -2 -1   (111):  1  1  1 .   (4):    -1   (22):    1  1   (31):    2     1   (211):  -3 -2 -2 -1   (1111):  1  1  1  1  1 .   (5):      1   (41):    -2 -1   (32):    -2    -1   (221):    3  1  2  1   (311):    3  2  1     1   (2111):  -4 -3 -3 -2 -2 -1   (11111):  1  1  1  1  1  1  1 For example, row 14 gives: f(32) = -2m(5) - m(32). CROSSREFS This is a regrouping of the triangle A321886. Cf. A005651, A008480, A056239, A124794, A124795, A215366, A318284, A318360, A319191, A319193, A321912-A321935. Sequence in context: A065712 A153172 A242498 * A016194 A258139 A261887 Adjacent sequences:  A321924 A321925 A321926 * A321928 A321929 A321930 KEYWORD sign,tabf AUTHOR Gus Wiseman, Nov 22 2018 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 20 08:23 EDT 2019. Contains 328253 sequences. (Running on oeis4.)