login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A321929
Tetrangle where T(n,H(u),H(v)) is the coefficient of f(v) in s(u), where u and v are integer partitions of n, H is Heinz number, f is forgotten symmetric functions, and s is Schur functions.
0
1, 0, 1, 1, 1, 0, 0, 1, 0, 1, 2, 1, 1, 1, 0, 0, 0, 0, 1, 0, 1, 0, 1, 2, 0, 0, 0, 1, 3, 0, 1, 1, 2, 3, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 4, 0, 0, 0, 1, 0, 2, 5, 0, 0, 1, 2, 1, 3, 5, 0, 0, 0, 1, 1, 3, 6, 0, 1, 1, 2, 2, 3, 4, 1, 1, 1, 1, 1, 1
OFFSET
1,11
COMMENTS
The Heinz number of an integer partition (y_1, ..., y_k) is prime(y_1) * ... * prime(y_k).
EXAMPLE
Tetrangle begins (zeros not shown):
(1): 1
.
(2): 1
(11): 1 1
.
(3): 1
(21): 1 2
(111): 1 1 1
.
(4): 1
(22): 1 1 2
(31): 1 3
(211): 1 1 2 3
(1111): 1 1 1 1 1
.
(5): 1
(41): 1 4
(32): 1 2 5
(221): 1 2 1 3 5
(311): 1 1 3 6
(2111): 1 1 2 2 3 4
(11111): 1 1 1 1 1 1 1
For example, row 14 gives: s(32) = f(221) + 2f(2111) + 5f(11111).
CROSSREFS
This is a regrouping of the triangle A321892.
Sequence in context: A086072 A086009 A086010 * A089198 A059607 A176724
KEYWORD
nonn,tabf
AUTHOR
Gus Wiseman, Nov 23 2018
STATUS
approved