login
A321928
Tetrangle where T(n,H(u),H(v)) is the coefficient of f(v) in p(u), where u and v are integer partitions of n, H is Heinz number, f is forgotten symmetric functions, and p is power sum symmetric functions.
0
1, -1, 0, 1, 2, 1, 0, 0, -1, -1, 0, 1, 3, 6, -1, 0, 0, 0, 0, 1, 2, 0, 0, 0, 1, 0, 1, 0, 0, -1, -2, -2, -2, 0, 1, 6, 4, 12, 24, 1, 0, 0, 0, 0, 0, 0, -1, -1, 0, 0, 0, 0, 0, -1, 0, -1, 0, 0, 0, 0, 1, 1, 2, 2, 0, 0, 0, 1, 2, 1, 0, 2, 0, 0, -1, -3, -4, -6, -6, -6
OFFSET
1,5
COMMENTS
The Heinz number of an integer partition (y_1, ..., y_k) is prime(y_1) * ... * prime(y_k).
EXAMPLE
Tetrangle begins (zeroes not shown):
(1): 1
.
(2): -1
(11): 1 2
.
(3): 1
(21): -1 -1
(111): 1 3 6
.
(4): -1
(22): 1 2
(31): 1 1
(211): -1 -2 -2 -2
(1111): 1 6 4 12 24
.
(5): 1
(41): -1 -1
(32): -1 -1
(221): 1 1 2 2
(311): 1 2 1 2
(2111): -1 -3 -4 -6 -6 -6
(11111): 1 5 10 30 20 60 20
For example, row 14 gives: p(32) = -f(5) - f(32).
CROSSREFS
An unsigned version is A321917. This is a regrouping of the triangle A321888.
Sequence in context: A151692 A280829 A303942 * A321917 A115201 A354100
KEYWORD
sign,tabf
AUTHOR
Gus Wiseman, Nov 22 2018
STATUS
approved