The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A321888 Irregular triangle read by rows where T(H(u),H(v)) is the coefficient of f(v) in p(u), where H is Heinz number, p is power sum symmetric functions, and f is forgotten symmetric functions. 2
 1, 1, -1, 0, 1, 2, 1, 0, 0, -1, -1, 0, -1, 0, 0, 0, 0, 1, 3, 6, 1, 2, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, -1, -2, -2, -2, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, -1, 0, 0, 0, 0, 0, -1, 0, -1, 0, 0, 0, 0, 1, 6, 4, 12, 24, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,6 COMMENTS Row n has length A000041(A056239(n)). The Heinz number of an integer partition (y_1, ..., y_k) is prime(y_1) * ... * prime(y_k). Up to sign, a(n) is also the coefficient of m(v) in p(u), where m is monomial symmetric functions. LINKS Wikipedia, Symmetric polynomial EXAMPLE Triangle begins:    1    1   -1   0    1   2    1   0   0   -1  -1   0   -1   0   0   0   0    1   3   6    1   2   0   0   0    1   0   1   0   0    1   0   0   0   0   0   0   -1  -2  -2  -2   0   -1   0   0   0   0   0   0   0   0   0   0   -1  -1   0   0   0   0   0   -1   0  -1   0   0   0   0    1   6   4  12  24    1   0   0   0   0   0   0   0   0   0   0   0   0   0   0    1   1   2   2   0   0   0 For example, row 12 gives: p(211) = -f(4) - 2f(22) - 2f(31) - 2f(211). CROSSREFS Row sums are A321889. Cf. A005651, A008277, A008480, A048994, A056239, A124794, A124795, A319182, A319193, A321742-A321765. Sequence in context: A035227 A049340 A328556 * A321750 A056929 A304096 Adjacent sequences:  A321885 A321886 A321887 * A321889 A321890 A321891 KEYWORD sign,tabf AUTHOR Gus Wiseman, Nov 20 2018 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 28 03:04 EDT 2020. Contains 334671 sequences. (Running on oeis4.)