OFFSET
1,5
COMMENTS
A generalization of the triangle of Stirling numbers of the second kind, these are the coefficients appearing in the expansion of (x_1 + x_2 + x_3 + ...)^n in terms of augmented monomial symmetric functions. They also appear in Faa di Bruno's formula.
EXAMPLE
Triangle begins:
1
1 1
1 3 1
1 3 4 6 1
1 5 10 15 10 10 1
1 15 6 10 15 15 60 45 20 15 1
The fourth row corresponds to the symmetric function identity (x_1 + x_2 + x_3 + ...)^4 = m(4) + 3 m(22) + 4 m(31) + 6 m(211) + m(1111).
MATHEMATICA
primeMS[n_]:=If[n==1, {}, Flatten[Cases[FactorInteger[n], {p_, k_}:>Table[PrimePi[p], {k}]]]];
numSetPtnsOfType[ptn_]:=Total[ptn]!/Times@@Factorial/@ptn/Times@@Factorial/@Length/@Split[ptn];
Table[numSetPtnsOfType/@primeMS/@Sort[Times@@Prime/@#&/@IntegerPartitions[n]], {n, 7}]
CROSSREFS
KEYWORD
nonn,tabf
AUTHOR
Gus Wiseman, Sep 12 2018
STATUS
approved