login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A319182
Irregular triangle where T(n,k) is the number of set partitions of {1,...,n} with block-sizes given by the integer partition with Heinz number A215366(n,k).
10
1, 1, 1, 1, 3, 1, 1, 3, 4, 6, 1, 1, 5, 10, 15, 10, 10, 1, 1, 15, 6, 10, 15, 15, 60, 45, 20, 15, 1, 1, 7, 21, 35, 105, 21, 105, 70, 105, 35, 210, 105, 35, 21, 1, 1, 8, 28, 35, 28, 56, 210, 168, 280, 280, 105, 420, 56, 840, 280, 420, 70, 560, 210, 56, 28, 1, 1
OFFSET
1,5
COMMENTS
A generalization of the triangle of Stirling numbers of the second kind, these are the coefficients appearing in the expansion of (x_1 + x_2 + x_3 + ...)^n in terms of augmented monomial symmetric functions. They also appear in Faa di Bruno's formula.
FORMULA
T(n,k) = A124794(A215366(n,k)).
EXAMPLE
Triangle begins:
1
1 1
1 3 1
1 3 4 6 1
1 5 10 15 10 10 1
1 15 6 10 15 15 60 45 20 15 1
The fourth row corresponds to the symmetric function identity (x_1 + x_2 + x_3 + ...)^4 = m(4) + 3 m(22) + 4 m(31) + 6 m(211) + m(1111).
MATHEMATICA
primeMS[n_]:=If[n==1, {}, Flatten[Cases[FactorInteger[n], {p_, k_}:>Table[PrimePi[p], {k}]]]];
numSetPtnsOfType[ptn_]:=Total[ptn]!/Times@@Factorial/@ptn/Times@@Factorial/@Length/@Split[ptn];
Table[numSetPtnsOfType/@primeMS/@Sort[Times@@Prime/@#&/@IntegerPartitions[n]], {n, 7}]
CROSSREFS
KEYWORD
nonn,tabf
AUTHOR
Gus Wiseman, Sep 12 2018
STATUS
approved