login
A319183
a(n) = phi(n^n - 1)/n where phi is A000010.
2
1, 4, 32, 280, 5040, 37856, 829440, 15676416, 589032000, 10374307328, 388566097920, 7619466454080, 390751784579520, 11138729990400000, 575561351791902720, 24328359845627701248, 1640651748984970444800, 34709116765970413844280, 2459108342476800000000000
OFFSET
2,2
COMMENTS
Main diagonal of the array T(n,k) = phi(n^k-1)/k for n > 1 and k > 1, which starts
1, 2, 2, 6, 6, 18, 16, ... A011260
2, 4, 8, 22, 48, 156, 320, ... A027385
4, 12, 32, 120, 288, 1512, 4096, ... A027695
4, 20, 48, 280, 720, 5580, 14976, ... A027741
12, 56, 216, 1240, 5040, 31992, 139968, ... A295496
8, 36, 160, 1120, 6048, 37856, 192000, ... A027743
18, 144, 432, 5400, 23328, 254016, 829440, ... A027744
LINKS
Eric Weisstein's World of Mathematics, Totient Function.
MATHEMATICA
Table[EulerPhi[n^n-1]/n, {n, 20}] (* Harvey P. Dale, Aug 04 2020 *)
PROG
(PARI) {a(n) = eulerphi(n^n-1)/n}
CROSSREFS
A diagonal of A369291.
Sequence in context: A246818 A145710 A264633 * A199566 A370160 A372464
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Sep 12 2018
STATUS
approved