login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = phi(n^n - 1)/n where phi is A000010.
2

%I #30 Jan 31 2024 20:50:21

%S 1,4,32,280,5040,37856,829440,15676416,589032000,10374307328,

%T 388566097920,7619466454080,390751784579520,11138729990400000,

%U 575561351791902720,24328359845627701248,1640651748984970444800,34709116765970413844280,2459108342476800000000000

%N a(n) = phi(n^n - 1)/n where phi is A000010.

%C Main diagonal of the array T(n,k) = phi(n^k-1)/k for n > 1 and k > 1, which starts

%C 1, 2, 2, 6, 6, 18, 16, ... A011260

%C 2, 4, 8, 22, 48, 156, 320, ... A027385

%C 4, 12, 32, 120, 288, 1512, 4096, ... A027695

%C 4, 20, 48, 280, 720, 5580, 14976, ... A027741

%C 12, 56, 216, 1240, 5040, 31992, 139968, ... A295496

%C 8, 36, 160, 1120, 6048, 37856, 192000, ... A027743

%C 18, 144, 432, 5400, 23328, 254016, 829440, ... A027744

%H Seiichi Manyama, <a href="/A319183/b319183.txt">Table of n, a(n) for n = 2..50</a>

%H Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/TotientFunction.html">Totient Function</a>.

%H Wikipedia, <a href="https://en.wikipedia.org/wiki/Euler%27s_totient_function">Euler's totient function</a>.

%t Table[EulerPhi[n^n-1]/n,{n,20}] (* _Harvey P. Dale_, Aug 04 2020 *)

%o (PARI) {a(n) = eulerphi(n^n-1)/n}

%Y A diagonal of A369291.

%Y Cf. A000010, A006486, A027385.

%K nonn

%O 2,2

%A _Seiichi Manyama_, Sep 12 2018