|
|
A011260
|
|
Number of primitive polynomials of degree n over GF(2).
(Formerly M0107 N0132)
|
|
25
|
|
|
1, 1, 2, 2, 6, 6, 18, 16, 48, 60, 176, 144, 630, 756, 1800, 2048, 7710, 7776, 27594, 24000, 84672, 120032, 356960, 276480, 1296000, 1719900, 4202496, 4741632, 18407808, 17820000, 69273666, 67108864, 211016256, 336849900, 929275200, 725594112, 3697909056
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,3
|
|
REFERENCES
|
E. R. Berlekamp, Algebraic Coding Theory, McGraw-Hill, NY, 1968, p. 84.
T. L. Booth, An analytical representation of signals in sequential networks, pp. 301-3240 of Proceedings of the Symposium on Mathematical Theory of Automata. New York, N.Y., 1962. Microwave Research Institute Symposia Series, Vol. XII; Polytechnic Press of Polytechnic Inst. of Brooklyn, Brooklyn, N.Y. 1963 xix+640 pp. See p. 303.
P. Fan and M. Darnell, Sequence Design for Communications Applications, Wiley, NY, 1996, Table 5.1, p. 118.
W. W. Peterson and E. J. Weldon, Jr., Error-Correcting Codes. MIT Press, Cambridge, MA, 2nd edition, 1972, p. 476.
M. P. Ristenblatt, Pseudo-Random Binary Coded Waveforms, pp. 274-314 of R. S. Berkowitz, editor, Modern Radar, Wiley, NY, 1965; see p. 296.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
|
|
LINKS
|
|
|
MAPLE
|
with(numtheory): phi(2^n-1)/n;
|
|
MATHEMATICA
|
Table[EulerPhi[(2^n - 1)]/n, {n, 1, 50}]
|
|
PROG
|
(PARI) a(n)=eulerphi(2^n-1)/n - Hauke Worpel (thebigh(AT)outgun.com), Jun 10 2008
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn,easy,nice
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|