login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A000020
Number of primitive polynomials of degree n over GF(2).
10
2, 1, 2, 2, 6, 6, 18, 16, 48, 60, 176, 144, 630, 756, 1800, 2048, 7710, 7776, 27594, 24000, 84672, 120032, 356960, 276480, 1296000, 1719900, 4202496, 4741632, 18407808, 17820000, 69273666, 67108864, 211016256, 336849900, 929275200, 725594112, 3697909056
OFFSET
1,1
COMMENTS
The initial 2 should really be a 1. See A011260 for official version.
REFERENCES
E. R. Berlekamp, Algebraic Coding Theory, McGraw-Hill, NY, 1968, p. 84.
T. L. Booth, An analytical representation of signals in sequential networks, pp. 301-3240 of Proceedings of the Symposium on Mathematical Theory of Automata. New York, N.Y., 1962. Microwave Research Institute Symposia Series, Vol. XII; Polytechnic Press of Polytechnic Inst. of Brooklyn, Brooklyn, N.Y. 1963 xix+640 pp. See p. 303.
W. W. Peterson and E. J. Weldon, Jr., Error-Correcting Codes. MIT Press, Cambridge, MA, 2nd edition, 1972, p. 476.
M. P. Ristenblatt, Pseudo-Random Binary Coded Waveforms, pp. 274-314 of R. S. Berkowitz, editor, Modern Radar, Wiley, NY, 1965; see p. 296.
LINKS
R. Church, Tables of irreducible polynomials for the first four prime moduli, Annals Math., 36 (1935), 198-209.
S. V, Duzhin and D. V. Pasechnik, Groups acting on necklaces and sandpile groups, 2014. See p. 92. - N. J. A. Sloane, Jun 30 2014
MATHEMATICA
Table[If[n==1, 2, EulerPhi[2^n-1]/n], {n, 1, 50}] (* Vladimir Joseph Stephan Orlovsky, Jan 24 2012 *)
PROG
(PARI) a(n)=if(n==1, 2, eulerphi(2^n-1)/n) \\ Hauke Worpel (thebigh(AT)outgun.com), Jun 10 2008
CROSSREFS
Cf. A058947, A011260 (with initial term 1).
Sequence in context: A351082 A334500 A081727 * A077014 A093655 A023140
KEYWORD
nonn
STATUS
approved