The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Please make a donation to keep the OEIS running. We are now in our 56th year. In the past year we added 10000 new sequences and reached almost 9000 citations (which often say "discovered thanks to the OEIS"). Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A011262 In the prime factorization of n, increment odd powers and decrement even powers (multiplicative and self-inverse). 4
 1, 4, 9, 2, 25, 36, 49, 16, 3, 100, 121, 18, 169, 196, 225, 8, 289, 12, 361, 50, 441, 484, 529, 144, 5, 676, 81, 98, 841, 900, 961, 64, 1089, 1156, 1225, 6, 1369, 1444, 1521, 400, 1681, 1764, 1849, 242, 75, 2116, 2209, 72, 7, 20, 2601, 338, 2809, 324, 3025, 784, 3249 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 LINKS Paul Tek, Table of n, a(n) for n = 1..10000 FORMULA Multiplicative with f(p^k) = p^(k-1) if k even, p^(k+1) if k odd. a(n) = product(A027748(n,k) ^ A103889(A124010(n,k)): k = 1..A001221(n)). - Reinhard Zumkeller, Jun 23 2013 MATHEMATICA f[n_, k_] := n^(If[EvenQ[k], k - 1, k + 1]); Table[Times @@ f @@@ FactorInteger[n], {n, 57}] (* Jayanta Basu, Aug 14 2013 *) PROG (PARI) a(n)=my(f=factor(n)); return(prod(i=1, #f[, 1], f[i, 1]^(f[i, 2]-(-1)^f[i, 2]))) /* Paul Tek, Jun 01 2013 */ (Haskell) a011262 n = product \$ zipWith (^)                       (a027748_row n) (map a103889 \$ a124010_row n) -- Reinhard Zumkeller, Jun 23 2013 CROSSREFS Cf. A011264. Sequence in context: A048758 A277802 A159253 * A073843 A073842 A136271 Adjacent sequences:  A011259 A011260 A011261 * A011263 A011264 A011265 KEYWORD nonn,easy,mult AUTHOR STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified November 28 20:14 EST 2020. Contains 338753 sequences. (Running on oeis4.)